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Symmetric Functions

We continue our catalog of important symmetric functions. We have already seen (1) the monomial sym-

metric functions

mλ =
∑

{a1,...,aℓ}⊂P

xλ1

a1
xλ2

a2
· · ·xλℓ

aℓ
;

(2) the elementary symmetric functions

ek =
∑

0<i1<i2<···<ik

xi1xi2 · · ·xik
, eλ = eλ1

· · · eλℓ
;

and (3) the complete homogeneous symmetric functions

hk =
∑

0<i1≤i2≤···≤ik

xi1xi2 · · ·xik
, hλ = hλ1

· · ·hλℓ
.

4. Power sums. These are defined by

pk = xk
1 + xk

2 + · · · = mk,

pλ = pλ1
· · · pλℓ

.

For example, in degree 2,

p2 = m2,

p11 = (x1 + x2 + · · · )2 = m2 + 2m11.

While {p2, p11} is a Q-vector space basis for ΛQ, it is not a Z-module basis for ΛZ. To put this in a
more elementary way, not every symmetric function with integer coefficients can be expressed as an integer
combination of the power-sums; for example, m11 = (p11 − p2)/2.

5. Schur functions. The definition of these power series is very different from the preceding ones, and it
looks quite weird at first. However, the Schur functions turn out to be essential in the study of symmetric
functions.

Definition 1. A column-strict tableau T of shape λ, or λ-CST for short, is a labeling of the boxes of a
Ferrers diagram with integers (not necessarily distinct) that is

• weakly increasing across every row; and
• strictly increasing down every column.

The partition λ is called the shape of T , and the set of all column-strict tableaux of shape λ is denoted
CST (λ). The content of a CST is the sequence α = (α1, α2, . . . ), where αi is the number of boxes labelled i,
and the weight of T is the monomial xT = xα = xα1

1 xα2

2 · · · .

For example, here are two CST’s, and one tableau that is not an CST, of shape λ = (3, 2):

1 1 3

2 3

1 1 1

4 8

1 2 3

1 4

x1
2 x2 x3

2 x8x1
3 x4 Not a SST



Definition 2. The Schur function corresponding to a partition λ is

sλ =
∑

T∈CST (λ)

xT .

It is far from obvious that sλ is symmetric, but in fact it is. We will prove this shortly.

Example 1. Suppose that λ = (n) is the partition with one part, so that the corresponding Ferrers diagram
has a single row. Each multiset of n positive integers (with repeats allowed) corresponds to exactly one CST,
in which the numbers occur left to right in increasing order. Therefore

(1) s(n) = hn =
∑

λ⊢n

mλ.

At the other extreme, suppose that λ = (1, 1, . . . , 1) is the partition with n singleton parts, so that the
corresponding Ferrers diagram has a single column. To construct a CST of this shape, we need n distinct
labels, which can be arbitrary. Therefore

(2) s(1,1,...,1) = en = m(1,1,...,1).

Let λ = (2, 1). We will express sλ as a sum of monomial symmetric functions. No tableau in CST (λ) can
have three equal entries, so the coefficient of m3 is zero.

For weight xaxbxc with a < b < c, there are two possibilities, shown below.

a b

c

a

b

c

Therefore, the coefficient of m111 is 1.

Finally, for every a 6= b ∈ N, there is one tableau of shape λ and weight x2
axb — either the one on the left if

a < b, or the one on the right if a > b.

a b

b

b

a

b

Therefore, s(2,1) = 2m111 + m21.

Proposition 1. sλ is a symmetric function for all λ.

Proof. First, observe that the number

(3) c(λ, α) = |{T ∈ CST (λ) | xT = xα}|

depends only on the ordered sequence of nonzero exponents∗ in α. For instance, for any λ ⊢ 8, there are the
same number of λ-CST’s with weights

x1
1x

2
2x

4
3x

1
9 and x1

1x
2
2x

4
7x

1
9

because there is an obvious bijection between them given by changing all 3’s to 7’s or vice versa.

To complete the proof that sλ is symmetric, it suffices to show that swapping the powers of adjacent variables
does not change c(λ, α). That will imply that sλ is invariant under every adjacent transposition (k k + 1),
and these transpositions generate the group S∞.

∗ This is precisely the statement that sλ is a quasisymmetric function.



We will prove this by a bijection, which is easiest to show by example. Let λ = (9, 7, 4, 3, 2). We would like
to show that there are the same number of λ-CST’s with weights

x3
1x

2
2x

3
3x

3
4x

4

5
x

7

6
x3

7 and x3
1x

2
2x

3
3x

3
4x

7

5
x

4

6
x3

7.

Let T be the following λ-CST:

1 1 2 3

43

7

2

1

77

4

4

3

6 6 65

65

65

66

5

Observe that the occurrences of 5 and of 6 each form “snakes” from southwest to northeast.

1 1 2 3

43

7

5

5

5

6

6

6

6

6

2

1

77

66

4

4

5

3

To construct a new tableau in which the numbers of 5’s and of 6’s are switched, we ignore all the columns
containing both a 5 and a 6, and then group together all the other strings of 5’s and 6’s in the same row.

1 1 2 3

43

7

5

5

5

6

6

2

1

77

4

4

3

5

6

666

6

Then, we swap the numbers of 5’s and 6’s in each of those contiguous blocks.



1 1 2 3

43

7

5

5

5

6

6

6

2

1

77

4

4

3

5 5

6

5

5

This construction allows us to swap the exponents on xk and xk+1 for any k, concluding the proof. �

Theorem 2. For each n ≥ 1, the sets

{mλ | λ ⊢ n}, {eλ | λ ⊢ n}, {hλ | λ ⊢ n}, and {sλ | λ ⊢ n}

are all Z-bases for Λ, i.e., bases for ΛZ,n as a free Z-module, and

{pλ | λ ⊢ n}

is a Q-basis for Λ, i.e., a basis for ΛQ,n as a vector space. Moreover,

{e1, e2, . . . } and {h1, h2, . . . }

generate Λ as a polynomial algebra over R.

Sketch of proof: It is more or less obvious that the mλ are a Z-basis.

To show that the Schur functions are a Z-basis, we show that they can be obtained from mλ by a unitriangular

change of basis. Specifically, we write each Schur function as an integer linear combination of monomial
symmetric functions as

sλ =
∑

λ⊢n

Kλµmµ

and then show that the matrix [Kλµ] is triangular, with 1’s on the main diagonal; therefore, it is invertible
and its inverse has integer entries. Note that by the definition of Schur functions, the coefficient Kλµ is the
number of column-strict tableaux with shape λ and content µ; these are the so-called Kostka numbers.

Of course, to do this we have to specify an ordering on the partitions. Rather than the lexicographic total
order we have worked with before, it turns out to be convenient to work with a partial order, as follows.

Definition 3. Let λ = (λ1, . . . , λℓ) and µ = (µ1, . . . , µm) be partitions of n. We say that λ dominates µ,
written λ D µ, if ℓ ≤ m and

λ1 ≥ µ1,

λ1 + λ2 ≥ µ1 + µ2,

. . .

λ1 + · · · + λℓ ≥ µ1 + · · · + µℓ.

Proposition 3. Kλλ = 1 for all λ. Moreover, Kλµ = 0 unless λ D µ.



The proof of this fact is a homework problem. As a corollary, the matrix of Kostka numbers is unitriangular
for any total order (such as the lexicographic order) which refines dominance. A similar result holds for the
elementary symmetric functions. If we write

eλ =
∑

µ

Bλµmµ

then the coefficients Bλµ have a nice combinatorial interpretation, and it turns out that

Bλµ =

{

1 if µ = λ′,

0 if µ 6 Eλ′

where λ′ denotes the conjugate (or transpose) of λ.

The proof that the pλ form a Q-basis is analogous, although in this case the change of basis has non-1’s on
the diagonal and so is not invertible over Z (but it is invertible over Q).

The hλ’s are different. They have lots and lots of terms, so the coefficients of the transition matrix are all
nonzero and we can’t use triangularity to prove that they are a basis. However, we can do something else
clever.


