Wednesday $4 / 23$

Frobenius Reciprocity

Let $H \subset G$ be finite groups, and let ψ, χ be characters of G and H respectively. The restricted character of ψ on H is

$$
\begin{equation*}
\operatorname{Res}_{H}^{G} \psi(h)=\psi(h) \tag{1}
\end{equation*}
$$

and the induced character of χ on G is

$$
\begin{equation*}
\operatorname{Ind}_{H}^{G} \chi(g)=\frac{1}{|H|} \sum_{\substack{k \in G \\ k^{-1} g k \in H}} \chi_{\rho}\left(k^{-1} g k\right) \tag{2}
\end{equation*}
$$

Theorem 1 (Frobenius Reciprocity). $\left\langle\operatorname{Ind}_{H}^{G} \chi, \psi\right\rangle_{G}=\left\langle\chi, \operatorname{Res}_{H}^{G} \psi\right\rangle_{H}$.
Proof.

$$
\begin{aligned}
\left\langle\operatorname{Ind}_{H}^{G} \chi, \psi\right\rangle_{G} & =\frac{1}{|G|} \sum_{g \in G} \overline{\operatorname{Ind}_{H}^{G} \chi(g)} \psi(g) \\
& =\frac{1}{|G|} \sum_{g \in G} \frac{1}{|H|} \sum_{k \in G:} \overline{k^{-1} g k \in H} \overline{\chi\left(k^{-1} g k\right)} \psi(g) \\
& =\frac{1}{|G||H|} \sum_{h \in H} \sum_{k \in G} \sum_{\substack{g \in G \\
k^{-1} g k=h}}^{\overline{\chi(h)} \psi\left(k^{-1} g k\right)} \\
& =\frac{1}{|G||H|} \sum_{h \in H} \sum_{k \in G} \overline{\chi(h)} \psi(h) \\
& =\frac{1}{|H|} \sum_{h \in H} \overline{\chi(h)} \psi(h) \\
& =\left\langle\chi, \operatorname{Res}_{H}^{G} \psi\right\rangle_{H} .
\end{aligned}
$$

See Monday's notes for an application (and there will be more later).

Symmetric Functions

Definition 1. Let R be a commutative ring (typically \mathbb{Q} or \mathbb{Z}). A symmetric function is a polynomial in $R\left[x_{1}, \ldots, x_{n}\right]$ that is invariant under permuting the variables.

For example, if $n=3$, then up to scalar multiplication, the only symmetric function of degree 1 in x_{1}, x_{2}, x_{3} is $x_{1}+x_{2}+x_{3}$.

In degree 2, here are two:

$$
x_{1}^{2}+x_{2}^{2}+x_{3}^{2}, \quad x_{1} x_{2}+x_{1} x_{3}+x_{2} x_{3}
$$

Every other symmetric function that is homogeneous of degree 2 is a R-linear combination of these two, because the coefficients of x_{1}^{2} and $x_{1} x_{2}$ determine the coefficients of all other monomials. Note that the set of all degree- 2 symmetric functions forms a vector space.

In degree 3 , the following three polynomials form a basis for the space of symmetric functions:

$$
\begin{aligned}
& x_{1}^{3}+x_{2}^{3}+x_{3}^{3}, \\
& x_{1}^{2} x_{2}+x_{1} x_{2}^{2}+x_{1}^{2} x_{3}+x_{1} x_{3}^{2}+x_{2}^{2} x_{3}+x_{2} x_{3}^{2} \\
& x_{1} x_{2} x_{3}
\end{aligned}
$$

Each member of this basis is a sum of the monomials in a single orbit under the action of \mathfrak{S}_{3}. Accordingly, we call them monomial symmetric functions, and index each by the partition whose parts are the exponents of one of its monomials. That is,

$$
\begin{aligned}
m_{3}\left(x_{1}, x_{2}, x_{3}\right) & =x_{1}^{3}+x_{2}^{3}+x_{3}^{3} \\
m_{21}\left(x_{1}, x_{2}, x_{3}\right) & =x_{1}^{2} x_{2}+x_{1} x_{2}^{2}+x_{1}^{2} x_{3}+x_{1} x_{3}^{2}+x_{2}^{2} x_{3}+x_{2} x_{3}^{2} \\
m_{111}\left(x_{1}, x_{2}, x_{3}\right) & =x_{1} x_{2} x_{3}
\end{aligned}
$$

In general, for $\lambda=\left(\lambda_{1}, \ldots, \lambda_{\ell}\right)$, we define

$$
m_{\lambda}\left(x_{1}, \ldots, x_{n}\right)=\sum_{\left\{a_{1}, \ldots, a_{\ell}\right\} \subset[n]} x_{a_{1}}^{\lambda_{1}} x_{a_{2}}^{\lambda_{2}} \cdots x_{a_{\ell}}^{\lambda_{\ell}}
$$

But unfortunately, this is zero if $\ell>n$. So we need more variables! In fact, we will in general work with an infinit \neq set of variables $\left\{x_{1}, x_{2}, \ldots\right\}$.

Definition 2. Let $\lambda \vdash n$. The monomial symmetric function m_{λ} is the power series

$$
m_{\lambda}=\sum_{\left\{a_{1}, \ldots, a_{\ell}\right\} \subset \mathbb{P}} x_{a_{1}}^{\lambda_{1}} x_{a_{2}}^{\lambda_{2}} \cdots x_{a_{\ell}}^{\lambda_{\ell}}
$$

That is, m_{λ} is the sum of all monomials whose exponents are the parts of λ. Another way to write this is

$$
m_{\lambda}=\sum_{\substack{\text { rearrangements } \\ \alpha \text { of } \lambda}} x^{\alpha}
$$

where x_{α} is shorthand for $x_{1}^{\alpha_{1}} x_{2}^{\alpha_{2}} \cdots$. Here we are regarding λ as a countably infinite sequence in which all but finitely many terms are 0 .

We then define

$$
\begin{aligned}
\Lambda_{d}=\Lambda_{R, d} & =\{\text { degree- } d \text { symmetric functions with coeff'ts in } R\} \\
\Lambda=\Lambda_{R} & =\bigoplus_{d \geq 0} \Lambda_{d}
\end{aligned}
$$

Each Λ_{d} is a finite-dimensional vector space, with basis $\left\{m_{\lambda} \mid \lambda \vdash d\right\} . \operatorname{dim}_{\mathbb{C}} \Lambda_{d}=p(d)$ (the number of partitions of d), and the dimension does not change even if we zero out all but d variables, so for many purposes it is permissible (and less intimidating) to regard Λ_{d} as the space of degree- d symmetric functions in d variables.

Moreover, Λ is a graded ring. In fact, let \mathfrak{S}_{∞} be the group whose members are the permutations of $\left\{x_{1}, x_{2}, \ldots\right\}$ with only finitely many non-fixed points; that is,

$$
\mathfrak{S}_{\infty}=\bigcup_{n=1}^{\infty} \mathfrak{S}_{n}
$$

Then

$$
\Lambda=R\left[\left[x_{1}, x_{2}, \ldots,\right]\right]^{\mathfrak{S}_{\infty}}
$$

[^0]
Where is all this going?

The punchline is that we are going to construct an isomorphism

$$
\Lambda_{\mathbb{Q}} \stackrel{F}{\longrightarrow} \bigoplus_{n \geq 0} C \ell_{\mathbb{Q}}\left(\mathfrak{S}_{n}\right)
$$

called the Frobenius characteristic. Thus will allow us to translate symmetric function identities into statements about representations and characters of \mathfrak{S}_{n}, and vice versa.

Important Families of Symmetric Functions

Throughout this section, let $\lambda=\left(\lambda_{1} \geq \lambda_{2} \geq \cdots \geq \lambda_{\ell}\right) \vdash n$.

1. Monomial symmetric functions. These we have just seen.
2. Elementary symmetric functions. For $k \in \mathbb{N}$ we define

$$
e_{k}=\sum_{\substack{S \subset \mathbb{N} \\|S|=k}} \prod_{s \in S} x_{s}=\sum_{0<i_{1}<i_{2}<\cdots<i_{k}} x_{i_{1}} x_{i_{2}} \cdots x_{i_{k}}=m_{11 \cdots 1}
$$

where there are $k 1^{\prime} s$ in the last expression. (In particular $e_{0}=1$.) We then define

$$
e_{\lambda}=e_{\lambda_{1}} \cdots e_{\lambda_{\ell}}
$$

For example,

$$
\begin{aligned}
e_{11} & =\left(x_{1}+x_{2}+x_{3}+\cdots\right)^{2} \\
& =\left(x_{1}^{2}+x_{2}^{2}+\cdots\right)+2\left(x_{1} x_{2}+x_{1} x_{3}+x_{2} x_{3}+x_{1} x_{4}+\cdots\right) \\
& =m_{2}+2 m_{11}, \\
e_{21} & =\left(x_{1}+x_{2}+x_{3}+\cdots\right)\left(x_{1} x_{2}+x_{1} x_{3}+x_{2} x_{3}+x_{1} x_{4}+\cdots\right) \\
& =m_{21}+3 m_{111}, \\
e_{111} & =\left(x_{1}+x_{2}+x_{3}+\cdots\right)^{3} \\
& =m_{3}+3 m_{21}+6 m_{111},
\end{aligned}
$$

et cetera.

Observe that

$$
\begin{equation*}
E(t):=\prod_{i \geq 1}\left(1+t x_{i}\right)=\sum_{k \geq 0} t^{k} e_{k} \tag{3}
\end{equation*}
$$

3. (Complete) homogeneous symmetric functions. For $k \in \mathbb{N}$, we define h_{k} to be the sum of all monomials of degree k :

$$
h_{k}=\sum_{\substack{\text { multisets } S \subset \mathbb{N} \\|S|=k}} \prod_{s \in S} x_{s}=\sum_{0<i_{1} \leq i_{2} \leq \cdots \leq i_{k}} x_{i_{1}} x_{i_{2}} \cdots x_{i_{k}}=\sum_{\lambda \vdash k} m_{\lambda}
$$

We then define

$$
h_{\lambda}=h_{\lambda_{1}} \cdots h_{\lambda_{\ell}} .
$$

For example, $h_{11}=e_{11}$ and

$$
h_{21}=h_{1} h_{2}=e_{1}\left(m_{11}+m_{2}\right)=e_{1}\left(e_{11}-e_{2}\right)=e_{111}-e_{21}=m_{3}+2 m_{21}+3 m_{111}
$$

The analogue of (4) for the homogeneous symmetric functions is

$$
\begin{equation*}
H(t):=\prod_{i \geq 1} \frac{1}{1-t x_{i}}=\sum_{k \geq 0} t^{k} h_{k} \tag{4}
\end{equation*}
$$

In many situations, the elementary and homogeneous symmetric functions behave dually.
As we will see, the sets $\left\{e_{\lambda} \mid \lambda \vdash d\right\} \quad$ and $\quad\left\{h_{\lambda} \mid \lambda \vdash d\right\}$ are \mathbb{Z}-module bases for Λ_{d}.

[^0]: *This (understandably) bothers some people. In practice, we rarely have to worry about more than finitely many variables when carrying out calculations.

