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Frobenius Reciprocity

Let H ⊂ G be finite groups, and let ψ, χ be characters of G and H respectively. The restricted character of
ψ on H is

(1) ResG
H ψ(h) = ψ(h)

and the induced character of χ on G is

(2) IndG
H χ(g) =

1

|H |

∑

k∈G
k−1gk∈H

χρ(k
−1gk).

Theorem 1 (Frobenius Reciprocity).
〈

IndG
H χ, ψ

〉

G
=

〈

χ, ResG
H ψ

〉

H
.

Proof.
〈

IndG
H χ, ψ

〉

G
=

1

|G|

∑

g∈G

IndG
H χ(g)ψ(g)

=
1

|G|

∑

g∈G

1

|H |

∑

k∈G: k−1gk∈H

χ(k−1gk)ψ(g) (by (2))

=
1

|G||H |

∑

h∈H

∑

k∈G

∑

g∈G

k−1gk=h

χ(h)ψ(k−1gk)

=
1

|G||H |

∑

h∈H

∑

k∈G

χ(h)ψ(h) (i.e., g = khk−1)

=
1

|H |

∑

h∈H

χ(h)ψ(h)

=
〈

χ, ResG
H ψ

〉

H
.

�

See Monday’s notes for an application (and there will be more later).

Symmetric Functions

Definition 1. Let R be a commutative ring (typically Q or Z). A symmetric function is a polynomial in
R[x1, . . . , xn] that is invariant under permuting the variables.

For example, if n = 3, then up to scalar multiplication, the only symmetric function of degree 1 in x1, x2, x3

is x1 + x2 + x3.

In degree 2, here are two:
x2

1 + x2
2 + x2

3, x1x2 + x1x3 + x2x3.

Every other symmetric function that is homogeneous of degree 2 is a R-linear combination of these two,
because the coefficients of x2

1 and x1x2 determine the coefficients of all other monomials. Note that the set
of all degree-2 symmetric functions forms a vector space.



In degree 3, the following three polynomials form a basis for the space of symmetric functions:

x3
1 + x3

2 + x3
3,

x2
1x2 + x1x

2
2 + x2

1x3 + x1x
2
3 + x2

2x3 + x2x
2
3,

x1x2x3.

Each member of this basis is a sum of the monomials in a single orbit under the action of S3. Accordingly, we
call them monomial symmetric functions, and index each by the partition whose parts are the exponents
of one of its monomials. That is,

m3(x1, x2, x3) = x3
1 + x3

2 + x3
3,

m21(x1, x2, x3) = x2
1x2 + x1x

2
2 + x2

1x3 + x1x
2
3 + x2

2x3 + x2x
2
3,

m111(x1, x2, x3) = x1x2x3.

In general, for λ = (λ1, . . . , λℓ), we define

mλ(x1, . . . , xn) =
∑

{a1,...,aℓ}⊂[n]

xλ1

a1
xλ2

a2
· · ·xλℓ

aℓ
.

But unfortunately, this is zero if ℓ > n. So we need more variables! In fact, we will in general work with an
infinite∗ set of variables {x1, x2, . . . }.

Definition 2. Let λ ⊢ n. The monomial symmetric function mλ is the power series

mλ =
∑

{a1,...,aℓ}⊂P

xλ1

a1
xλ2

a2
· · ·xλℓ

aℓ
.

That is, mλ is the sum of all monomials whose exponents are the parts of λ. Another way to write this is

mλ =
∑

rearrangements
α of λ

xα

where xα is shorthand for xα1

1 xα2

2 · · · . Here we are regarding λ as a countably infinite sequence in which all
but finitely many terms are 0.

We then define

Λd = ΛR,d = {degree-d symmetric functions with coeff’ts in R},

Λ = ΛR =
⊕

d≥0

Λd.

Each Λd is a finite-dimensional vector space, with basis {mλ | λ ⊢ d}. dimC Λd = p(d) (the number of
partitions of d), and the dimension does not change even if we zero out all but d variables, so for many
purposes it is permissible (and less intimidating) to regard Λd as the space of degree-d symmetric functions
in d variables.

Moreover, Λ is a graded ring. In fact, let S∞ be the group whose members are the permutations of
{x1, x2, . . . } with only finitely many non-fixed points; that is,

S∞ =

∞
⋃

n=1

Sn.

Then
Λ = R[[x1, x2, . . . , ]]

S∞ .

∗This (understandably) bothers some people. In practice, we rarely have to worry about more than finitely many variables
when carrying out calculations.



Where is all this going?

The punchline is that we are going to construct an isomorphism

ΛQ
F

−−→
⊕

n≥0

CℓQ(Sn)

called the Frobenius characteristic. Thus will allow us to translate symmetric function
identities into statements about representations and characters of Sn, and vice versa.

Important Families of Symmetric Functions

Throughout this section, let λ = (λ1 ≥ λ2 ≥ · · · ≥ λℓ) ⊢ n.

1. Monomial symmetric functions. These we have just seen.

2. Elementary symmetric functions. For k ∈ N we define

ek =
∑

S⊂N
|S|=k

∏

s∈S

xs =
∑

0<i1<i2<···<ik

xi1xi2 · · ·xik
= m11···1

where there are k 1′s in the last expression. (In particular e0 = 1.) We then define

eλ = eλ1
· · · eλℓ

.

For example,

e11 = (x1 + x2 + x3 + · · · )2

= (x2
1 + x2

2 + · · · ) + 2(x1x2 + x1x3 + x2x3 + x1x4 + · · · )

= m2 + 2m11,

e21 = (x1 + x2 + x3 + · · · )(x1x2 + x1x3 + x2x3 + x1x4 + · · · )

= m21 + 3m111,

e111 = (x1 + x2 + x3 + · · · )3

= m3 + 3m21 + 6m111,

et cetera.

Observe that

(3) E(t) :=
∏

i≥1

(1 + txi) =
∑

k≥0

tkek.

3. (Complete) homogeneous symmetric functions. For k ∈ N, we define hk to be the sum of all

monomials of degree k:

hk =
∑

multisets S⊂N
|S|=k

∏

s∈S

xs =
∑

0<i1≤i2≤···≤ik

xi1xi2 · · ·xik
=

∑

λ⊢k

mλ.

We then define
hλ = hλ1

· · ·hλℓ
.



For example, h11 = e11 and

h21 = h1h2 = e1(m11 +m2) = e1(e11 − e2) = e111 − e21 = m3 + 2m21 + 3m111.

The analogue of (4) for the homogeneous symmetric functions is

(4) H(t) :=
∏

i≥1

1

1 − txi

=
∑

k≥0

tkhk.

In many situations, the elementary and homogeneous symmetric functions behave dually.

As we will see, the sets {eλ | λ ⊢ d} and {hλ | λ ⊢ d} are Z-module bases for Λd.


