Monday 4/21

Restricted and Induced Representations

Definition 1. Let $H \subset G$ be finite groups, and let $\rho : G \to GL(V)$ be a representation of G. Then the restriction of ρ to H is a representation of G, denoted $\operatorname{Res}_{H}^{G}(\rho)$. Likewise, the restriction of $\chi = \chi_{\rho}$ to H is a chartacter of H denoted by $\operatorname{Res}_{H}^{G}(\chi)$.

Notice that restricting a representation does not change its character. OTOH, whether or not a representation is irreducible can change upon restriction.

Example 1. Let C_{λ} denote the conjugacy class in \mathfrak{S}_n of permutations of cycle-shape λ . Recall that $G = \mathfrak{S}_3$ has an irrep whose character $\psi = \chi_{\rho}$ is given by

$$\psi(C_{111}) = 2, \qquad \psi(C_{21}) = 0, \qquad \psi(C_3) = -1.$$

Let $H = \mathfrak{A}_3 \subseteq \mathfrak{S}_3$. This is an abelian group (isomorphic to $\mathbb{Z}/3\mathbb{Z}$)), so the two-dimensional representation $\operatorname{Res}^G_H(\rho)$ is not irreducible. Specifically, let $\omega = e^{2\pi i/3}$ The table of irreducible characters of \mathfrak{A}_3 is as follows:

	1_G	$(1\ 2\ 3)$	$(1\ 3\ 2)$
$\chi_{ m triv}$	1	1	1
χ_1	1	ω	ω^2
χ_2	1	ω^2	ω

Now it is evident that $\operatorname{Res}_{H}^{G} \psi = [2, -1, -1] = \chi_1 + \chi_2$. Note, by the way, that the conjugacy class $C_3 \subset \mathfrak{S}_3$ splits into two singleton conjugacy classes in \mathfrak{A}_3 , a common phenomenon when working with restrictions.

Next, we construct a representation of G from a representation of a subgroup $H \subset G$.

Definition 2. Let $H \subset G$ be finite groups, and let $\rho : H \to GL(W)$ be a representation of H. Define the *induced representation* $\operatorname{Ind}_{H}^{G}(\rho)$ as follows.

- Choose a set of left coset representatives $B = \{b_1, \ldots, b_r\}$ for H in G. That is, every $g \in G$ can be expressed uniquely as $g = b_j h$, for some $b_j \in B$ and $h \in H$.
- Let $\mathbb{C}[G/H]$ be the \mathbb{C} -vector space with basis B.
- Let $V = \mathbb{C}[G/H] \otimes_{\mathbb{C}} W$.
- Let $g \in G$ act on $b_i \otimes w \in V$ as follows. Find the unique $b_i \in B$ and $h \in H$ such that $gb_i = b_jh$, and put

$$g \cdot (b_i \otimes w) = b_j \otimes hw.$$

This makes more sense if we observe that $g = b_j h b_i^{-1}$, so that the equation becomes

$$b_j h b_i^{-1} \cdot (b_i \otimes w) = b_j \otimes h w.$$

• Extend this to a representation of G on V by linearity.

Proposition 1. $\operatorname{Ind}_{H}^{G}(\rho)$ is a representation of G that is independent of the choice of B. Moreover, for all $g \in G$,

$$\chi_{\mathrm{Ind}_{H}^{G}(\rho)}(g) = \frac{1}{|H|} \sum_{\substack{k \in G \\ k^{-1}gk \in H}} \chi_{\rho}(k^{-1}gk).$$

Proof. First, we verify that $\operatorname{Ind}_{H}^{G}(\rho)$ is a representation. Let $g, g' \in G$ and $b_i \otimes w \in V$. Then there is a unique $b_j \in B$ and $h \in H$ such that

(1) $gb_i = b_j h$

and in turn there is a unique $b_{\ell} \in B$ and $h' \in H$ such that

(2)
$$g'b_j = b_\ell h'.$$

We need to verify that

$$g' \cdot (g \cdot (b_i \otimes w)) = (g'g) \cdot (b_i \otimes w).$$

Indeed,

(3)

$$(g' \cdot (g \cdot (b_i \otimes w)) = g' \cdot (b_i \otimes hw)) = b_\ell \otimes h'hw$$

 $\left(g' \cdot (g \cdot (b_i \otimes w)) = g' \cdot (b_j \otimes hw)\right) = b$ On the other hand, by (1) and (2), $gb_i = b_j hb_i^{-1}$ and $g' = b_\ell h' b_j^{-1}$, so

$$(g'g) \cdot (b_i \otimes w) = (b_\ell h' h b_i^{-1}) \cdot (b_i \otimes w) = b_\ell \otimes h' h w$$

as desired.

Now that we know that $\operatorname{Ind}_{H}^{G}(\rho)$ is a representation of G on V, we find its character on an arbitrary element $g \in G$. Regard $\operatorname{Ind}_{H}^{G}(\rho)(g)$ as a block matrix with r row and column blocks, each of size dim W and corresponding to the subspace of V of vectors of the form $b_i \otimes w$ for some fixed b_i . The block in position (i,j) is

• a copy of $\rho(h)$, if $gb_i = b_j h$ for some $h \in H$,

• zero otherwise.

Therefore,

$$\begin{split} \chi_{\mathrm{Ind}_{H}^{G}(\rho)}(g) &= \mathrm{tr}\left(g: \ \mathbb{C}[G/H] \otimes_{\mathbb{C}} W \to \mathbb{C}[G/H] \otimes_{\mathbb{C}} W\right) \\ &= \sum_{\substack{i \in [r]: \\ gb_i = b_ih \\ (\exists h \in H)}} \chi_{\rho}(h) \\ &= \sum_{\substack{i \in [r]: \\ b_i^{-1}gb_i \in H)}} \chi_{\rho}(b_i^{-1}gb_i) \\ &= \frac{1}{|H|} \sum_{\substack{i \in [r]: \\ b_i^{-1}gb_i \in H}} \sum_{h \in H} \chi_{\rho}(h^{-1}b_i^{-1}gb_ih) \\ &= \frac{1}{|H|} \sum_{\substack{k \in G: \\ k^{-1}gk \in H}} \chi_{\rho}(k^{-1}gk). \end{split}$$

Here we have put $k = b_i h$, which runs over all elements of G. The character of $\operatorname{Ind}_H^G(\rho)$ is independent of the choice of B; therefore, so is the representation itself.

Theorem 2 (Frobenius Reciprocity). Let $H \subset G$ be finite groups. Let χ be a character of H and let ψ be $a \ character \ of \ G.$ Then

$$\left\langle \operatorname{Ind}_{H}^{G} \chi, \psi \right\rangle_{G} = \left\langle \chi, \operatorname{Res}_{H}^{G} \psi \right\rangle_{H}.$$

Example 2. Sometimes, Frobenius reciprocity suffices to calculate the isomorphism type of an induced representation. Let ψ , χ_1 and χ_2 be as in Example 1. We would like to compute $\operatorname{Ind}_H^G \chi_1$. By Frobenius reciprocity

$$\left\langle \operatorname{Ind}_{H}^{G} \chi_{1}, \psi \right\rangle_{G} = \left\langle \chi_{1}, \operatorname{Res}_{H}^{G} \psi \right\rangle_{H} = 1.$$

But ψ is irreducible. Therefore, it must be the case that $\operatorname{Ind}_{H}^{G}\chi_{1} = \psi$, and the corresponding representations are isomorphic. The same is true if we replace χ_1 with χ_2 .

Proof next time.