Monday 4/21

Restricted and Induced Representations

Definition 1. Let $H \subset G$ be finite groups, and let $\rho: G \rightarrow G L(V)$ be a representation of G. Then the restriction of ρ to H is a representation of G, denoted $\operatorname{Res}_{H}^{G}(\rho)$. Likewise, the restriction of $\chi=\chi_{\rho}$ to H is a chartacter of H denoted by $\operatorname{Res}_{H}^{G}(\chi)$.

Notice that restricting a representation does not change its character. OTOH, whether or not a representation is irreducible can change upon restriction.

Example 1. Let C_{λ} denote the conjugacy class in \mathfrak{S}_{n} of permutations of cycle-shape λ. Recall that $G=\mathfrak{S}_{3}$ has an irrep whose character $\psi=\chi_{\rho}$ is given by

$$
\psi\left(C_{111}\right)=2, \quad \psi\left(C_{21}\right)=0, \quad \psi\left(C_{3}\right)=-1
$$

Let $H=\mathfrak{A}_{3} \subseteq \mathfrak{S}_{3}$. This is an abelian group (isomorphic to $\mathbb{Z} / 3 \mathbb{Z}$)), so the two-dimensional representation $\operatorname{Res}_{H}^{G}(\rho)$ is not irreducible. Specifically, let $\omega=e^{2 \pi i / 3}$ The table of irreducible characters of \mathfrak{A}_{3} is as follows:

	1_{G}	(123)	(132)
$\chi_{\text {triv }}$	1	1	1
χ_{1}	1	ω	ω^{2}
χ_{2}	1	ω^{2}	ω

Now it is evident that $\operatorname{Res}_{H}^{G} \psi=[2,-1,-1]=\chi_{1}+\chi_{2}$. Note, by the way, that the conjugacy class $C_{3} \subset \mathfrak{S}_{3}$ splits into two singleton conjugacy classes in \mathfrak{A}_{3}, a common phenomenon when working with restrictions.

Next, we construct a representation of G from a representation of a subgroup $H \subset G$.
Definition 2. Let $H \subset G$ be finite groups, and let $\rho: H \rightarrow G L(W)$ be a representation of H. Define the induced representation $\operatorname{Ind}_{H}^{G}(\rho)$ as follows.

- Choose a set of left coset representatives $B=\left\{b_{1}, \ldots, b_{r}\right\}$ for H in G. That is, every $g \in G$ can be expressed uniquely as $g=b_{j} h$, for some $b_{j} \in B$ and $h \in H$.
- Let $\mathbb{C}[G / H]$ be the \mathbb{C}-vector space with basis B.
- Let $V=\mathbb{C}[G / H] \otimes_{\mathbb{C}} W$.
- Let $g \in G$ act on $b_{i} \otimes w \in V$ as follows. Find the unique $b_{i} \in B$ and $h \in H$ such that $g b_{i}=b_{j} h$, and put

$$
g \cdot\left(b_{i} \otimes w\right)=b_{j} \otimes h w
$$

This makes more sense if we observe that $g=b_{j} h b_{i}^{-1}$, so that the equation becomes

$$
b_{j} h b_{i}^{-1} \cdot\left(b_{i} \otimes w\right)=b_{j} \otimes h w
$$

- Extend this to a representation of G on V by linearity.

Proposition 1. $\operatorname{Ind}_{H}^{G}(\rho)$ is a representation of G that is independent of the choice of B. Moreover, for all $g \in G$,

$$
\chi_{\operatorname{Ind}_{H}^{G}(\rho)}(g)=\frac{1}{|H|} \sum_{\substack{k \in G \\ k^{-1} g k \in H}} \chi_{\rho}\left(k^{-1} g k\right) .
$$

Proof. First, we verify that $\operatorname{Ind}_{H}^{G}(\rho)$ is a representation. Let $g, g^{\prime} \in G$ and $b_{i} \otimes w \in V$. Then there is a unique $b_{j} \in B$ and $h \in H$ such that

$$
\begin{equation*}
g b_{i}=b_{j} h \tag{1}
\end{equation*}
$$

and in turn there is a unique $b_{\ell} \in B$ and $h^{\prime} \in H$ such that

$$
\begin{equation*}
g^{\prime} b_{j}=b_{\ell} h^{\prime} \tag{2}
\end{equation*}
$$

We need to verify that

$$
\begin{equation*}
g^{\prime} \cdot\left(g \cdot\left(b_{i} \otimes w\right)\right)=\left(g^{\prime} g\right) \cdot\left(b_{i} \otimes w\right) \tag{3}
\end{equation*}
$$

Indeed,

$$
\left(g^{\prime} \cdot\left(g \cdot\left(b_{i} \otimes w\right)\right)=g^{\prime} \cdot\left(b_{j} \otimes h w\right)\right)=b_{\ell} \otimes h^{\prime} h w
$$

On the other hand, by (11) and (2), $g b_{i}=b_{j} h b_{i}^{-1}$ and $g^{\prime}=b_{\ell} h^{\prime} b_{j}^{-1}$, so

$$
\left(g^{\prime} g\right) \cdot\left(b_{i} \otimes w\right)=\left(b_{\ell} h^{\prime} h b_{i}^{-1}\right) \cdot\left(b_{i} \otimes w\right)=b_{\ell} \otimes h^{\prime} h w
$$

as desired.
Now that we know that $\operatorname{Ind}_{H}^{G}(\rho)$ is a representation of G on V, we find its character on an arbitrary element $g \in G$. Regard $\operatorname{Ind}_{H}^{G}(\rho)(g)$ as a block matrix with r row and column blocks, each of size dim W and corresponding to the subspace of V of vectors of the form $b_{i} \otimes w$ for some fixed b_{i}. The block in position (i, j) is

- a copy of $\rho(h)$, if $g b_{i}=b_{j} h$ for some $h \in H$,
- zero otherwise.

Therefore,

$$
\begin{aligned}
\chi_{\operatorname{Ind}_{H}^{G}(\rho)}(g) & =\operatorname{tr}\left(g: \mathbb{C}[G / H] \otimes_{\mathbb{C}} W \rightarrow \mathbb{C}[G / H] \otimes_{\mathbb{C}} W\right) \\
& =\sum_{\substack{i \in[r]: \\
g b_{i}=b_{i} h \\
(\exists h \in H)}} \chi_{\rho}(h) \\
& =\sum_{\substack{\left.i \in[r]: \\
b_{i}^{-1} g b_{i} \in H\right)}} \chi_{\rho}\left(b_{i}^{-1} g b_{i}\right) \\
& =\frac{1}{|H|} \sum_{\substack{i \in[r]:}} \sum_{h \in H} \chi_{\rho}\left(h^{-1} b_{i}^{-1} g b_{i} h\right) \\
& =\frac{1}{|H|} \sum_{\substack{k \in G: \\
b_{i}^{-1} g b_{i} \in H}} \chi_{\rho}\left(k^{-1} g k\right) .
\end{aligned}
$$

Here we have put $k=b_{i} h$, which runs over all elements of G. The character of $\operatorname{Ind}_{H}^{G}(\rho)$ is independent of the choice of B; therefore, so is the representation itself.

Theorem 2 (Frobenius Reciprocity). Let $H \subset G$ be finite groups. Let χ be a chararacter of H and let ψ be a character of G. Then

$$
\left\langle\operatorname{Ind}_{H}^{G} \chi, \psi\right\rangle_{G}=\left\langle\chi, \operatorname{Res}_{H}^{G} \psi\right\rangle_{H}
$$

Example 2. Sometimes, Frobenius reciprocity suffices to calculate the isomorphism type of an induced representation. Let ψ, χ_{1} and χ_{2} be as in Example 1 We would like to compute $\operatorname{Ind}_{H}^{G} \chi_{1}$. By Frobenius reciprocity

$$
\left\langle\operatorname{Ind}_{H}^{G} \chi_{1}, \psi\right\rangle_{G}=\left\langle\chi_{1}, \operatorname{Res}_{H}^{G} \psi\right\rangle_{H}=1
$$

But ψ is irreducible. Therefore, it must be the case that $\operatorname{Ind}_{H}^{G} \chi_{1}=\psi$, and the corresponding representations are isomorphic. The same is true if we replace χ_{1} with χ_{2}.

Proof next time.

