Friday $4 / 18$

Characters of the Symmetric Group

We worked out the irreducible characters of \mathfrak{S}_{4} ad hoc. We'd like to have a way of calculating them in general.

Recall that a partition of n is a sequence $\lambda=\left(\lambda_{1}, \ldots, \lambda_{\ell}\right)$ of weakly decreasing positive integers whose sum is n. We write $\lambda \vdash n$ to indicate that λ is a partition of n. The number of partitions of n is denoted $p(n)$.

For $\lambda \vdash n$, let C_{λ} be the conjugacy class in \mathfrak{S}_{n} consisting of all permutations with cycle shape λ. Since the conjugacy classes are in bijection with the partitions of n, it makes sense to look for a set of representations indexed by partitions.
Definition 1. Let $\mu=\left(\mu_{1}, \ldots, \mu_{m}\right) \vdash n$. The Ferrers diagram of shape μ is the top- and left-justified array of boxes with μ_{i} boxes in the $i^{\text {th }}$ row. A Young tableau of shape μ is a Ferrers diagram with the numbers $1,2, \ldots, n$ placed in the boxes, one number to a box. Two tableaux T, T^{\prime} of shape μ are rowequivalent, written $T \sim T^{\prime}$, if the numbers in each row of T are the same as the numbers in the corresponding row of T^{\prime}. A tabloid of shape μ is an equivalence class of tableaux under row-equivalence. A tabloid can be represented as a tableau without vertical lines separating numbers in the same row. We write $\operatorname{sh}(T)=\mu$ to indicate that a tableau or tabloid T is of shape μ.

Ferrers diagram

Young tableau

Young tabloid

A Young tabloid can be regarded as a set partition $\left(T_{1}, \ldots, T_{m}\right)$ of $[n]$, in which $\left|T_{i}\right|=\mu_{i}$. The order of the blocks T_{i} matters, but not the order of digits within each block. Thus the number of tabloids of shape μ is

$$
\binom{n}{\mu}=\frac{n!}{\mu_{1}!\cdots \mu_{m}!}
$$

The symmetric group \mathfrak{S}_{n} acts on tabloids by permuting the numbers. Accordingly, we have a permutation representation $\left(\rho_{\mu}, V^{\mu}\right)$ of \mathfrak{S}_{n} on the vector space V^{μ} of all \mathbb{C}-linear combinations of tabloids of shape μ.

Example 1. For $n=3$, the characters of the representations ρ_{μ} are as follows.

λ			
	111	21	3
$\mu=(3)$	1	1	1
$\mu=(2,1)$	3	1	0
$\mu=(1,1,1)$	6	0	0
$\left\|C_{\lambda}\right\|$	1	3	2

Many familiar representations of \mathfrak{S}_{n} can be expressed in this form.

- There is a unique tabloid of shape $\mu=(n): T=12 \cdots n$. Every permutation fixes T, so

$$
\rho_{(n)} \cong \rho_{\text {triv }} .
$$

- The tabloids of shape $\mu=(1,1, \ldots, 1)$ are just the permutations of $[n]$. Therefore

$$
\rho_{(1,1, \ldots, 1)} \cong \rho_{\mathrm{reg}} .
$$

- A tabloid of shape $\mu=(n-1,1)$ is determined by its singleton part. So the representation ρ_{μ} is isomorphic to the action of \mathfrak{S}_{n} on this part by permutation; that is

$$
\rho_{(n-1,1)} \cong \rho_{\text {def }} .
$$

For $n=3$, the table in (1) is triangular, which implies immediately that the characters ρ_{μ} are linearly independent. It's not hard to prove that this is the case for all n.

Definition 2. The lexicographic order on partitions $\lambda, \mu \vdash n$ is defined as follows: $\lambda>\mu$ if for some $k>0$

$$
\begin{aligned}
\lambda_{1} & =\mu_{1}, \\
\lambda_{1}+\lambda_{2} & =\mu_{1}+\mu_{2} \\
\ldots & \\
\lambda_{1}+\cdots+\lambda_{k-1} & =\mu_{1}+\cdots+\mu_{k-1}, \\
\lambda_{1}+\cdots+\lambda_{k} & >\mu_{1}+\cdots+\mu_{k}
\end{aligned}
$$

Abbreviate $\chi_{\rho_{\mu}}$ by χ_{μ} henceforth. Since the ρ_{μ} are permutation representations, we can calculate χ_{μ} by counting fixed points. That is,

$$
\chi_{\mu} C_{\lambda}=\#\{\text { tabloids } T \mid \operatorname{sh}(T)=\mu, w(T)=T\}
$$

for any $w \in C_{\lambda}$.
Proposition 1. Let $\lambda, \mu \vdash n$. Then:
(1) $\chi_{\lambda}\left(C_{\lambda}\right) \neq 0$.
(2) $\chi_{\mu}\left(C_{\lambda}\right) \neq 0$ only if $\lambda \leq \mu$ in lexicographic order.

Proof. To show that $\chi_{\lambda}\left(C_{\lambda}\right) \neq 0$, let $w \in C_{\lambda}$; we must find a tabloid T of shape λ fixed by w. Indeed, we can take T to be any tabloid whose blocks are the cycles of w. For example, if $w=(136)(27)(45) \in \mathfrak{S}_{7}$, then T can be either of the following two tabloids:

On the other hand, w fixes a tabloid T of shape μ if and only if every cycle of w is contained in a row of P. In particular, the sum of any r parts of λ must be less than or equal to the sum of some r parts of μ, hence less than or equal to the sum of the first r parts of μ, which implies that $\lambda \leq \mu$

Corollary 2. The characters $\left\{\chi_{\mu} \mid \mu \vdash n\right\}$ form a basis for $C l(G)$.
Proof. The number of these characters is $\operatorname{dim} C \ell(G)$. Moreover, Proposition \square implies that the $p(n) \times p(n)$ matrix $X=\left[\chi_{\mu}\left(C_{\lambda}\right)\right]_{\mu, \lambda \vdash n}$ is triangular, hence nonsingular.

We can transform the rows of the matrix X into a list of irreducible characters of \mathfrak{S}_{n} by applying the Gram-Schmidt process (measuring orthogonality, of course, with the inner product $\langle\cdot, \cdot\rangle_{\mathfrak{G}_{n}}$). Indeed, the triangularity of X means that we will be able to label the irreducible characters of \mathfrak{S}_{n} as

$$
\left\{\tilde{\chi}_{\nu} \mid \nu \vdash n\right\}
$$

so that

$$
\begin{align*}
& \left\langle\tilde{\chi}_{\nu}, \chi_{\nu}\right\rangle_{G} \neq 0, \\
& \left\langle\tilde{\chi}_{\nu}, \chi_{\mu}\right\rangle_{G}=0 \quad \text { if } \nu<\mu . \tag{2}
\end{align*}
$$

Example 2. Recall the table of characters (1) of the representations ρ_{μ} for $n=3$. We will use this to produce the table of irreducible characters. For brevity, let's omit the commas between the parts of partitions μ.
First, $\chi_{(3)}=[1,1,1]=\chi_{\text {triv }}$ is irreducible. We therefore call it $\tilde{\chi}_{(3)}$.
Second, for the character $\chi_{(21)}$, we observe that

$$
\left\langle\chi_{(21)}, \tilde{\chi}_{(3)}\right\rangle_{G}=1 .
$$

Applying Gram-Schmidt, we construct a character orthonormal to $\tilde{\chi}_{(3)}$:

$$
\tilde{\chi}_{(21)}=\chi_{(21)}-\tilde{\chi}_{(3)}=[2,0,-1] .
$$

Notice that this character is irreducible.
Finally, for the character $\chi_{(111)}$, we have

$$
\begin{aligned}
& \left\langle\chi_{(111)}, \tilde{\chi}_{(3)}\right\rangle_{G}=1, \\
& \left\langle\chi_{(111)}, \tilde{\chi}_{(21)}\right\rangle_{G}=2 .
\end{aligned}
$$

Accordingly, we apply Gram-Schmidt to obtain the character

$$
\tilde{\chi}_{(111)}=\chi_{(111)}-\tilde{\chi}_{(3)}-2 \tilde{\chi}_{(21)}=[1,-1,1]
$$

which is 1 -dimensional, hence irreducible. In summary, the complete list of irreducible characters, labeled so as to satisfy (2), is as follows:

	λ			
	111	21	3	
$\tilde{\chi}_{(3)}$	1	1	1	$=\chi_{\text {triv }}$
	2	0	-1	
$\tilde{\chi}_{(2,1)}$				
$\tilde{\chi}_{(1,1,1)}$	1	-1	1	$=\chi_{\text {sign }}$

To summarize our calculation, we have shown that

$$
\left[\chi_{\mu}\right]_{\mu \vdash 3}=\left[\begin{array}{lll}
1 & 1 & 1 \\
3 & 1 & 0 \\
6 & 0 & 0
\end{array}\right]=\underbrace{\left[\begin{array}{lll}
1 & 0 & 0 \\
1 & 1 & 0 \\
1 & 2 & 1
\end{array}\right]}_{K}\left[\begin{array}{ccc}
1 & 1 & 1 \\
2 & 0 & -1 \\
1 & -1 & 1
\end{array}\right]=\left[K_{\lambda, \mu}\right]_{\lambda, \mu \vdash 3}\left[\tilde{\chi} \lambda_{\lambda}\right]_{\lambda \vdash 3}
$$

that is,

$$
\chi_{\mu}=\sum_{\lambda} K_{\lambda, \mu} \tilde{\chi}_{\lambda} .
$$

The numbers $K_{\lambda, \mu}$ are called the Kostka numbers. We will eventually find a combinatorial interpretation for them, which will imply easily that the matrix K is unitriangular.

