Wednesday 4/16

Irreducible Characters

Theorem 1. Let G be a finite group, and let (ρ, V) and $\left(\rho^{\prime}, V^{\prime}\right)$ be finite-dimensional representations of G over \mathbb{C}.
(i) If ρ and ρ^{\prime} are irreducible, then

$$
\left\langle\chi_{\rho}, \chi_{\rho^{\prime}}\right\rangle_{G}= \begin{cases}1 & \text { if } \rho \cong \rho^{\prime} \\ 0 & \text { otherwise }\end{cases}
$$

(ii) If $\rho_{1}, \ldots, \rho_{n}$ are distinct irreducible representations and

$$
\rho=\bigoplus_{i=1}^{n}(\underbrace{\rho_{i} \oplus \cdot \oplus \rho_{i}}_{m_{i}})=\bigoplus_{i=1}^{n} \rho_{i}^{\oplus m_{i}}
$$

then

$$
\left\langle\chi_{\rho}, \chi_{\rho_{i}}\right\rangle_{G}=m_{i}, \quad\left\langle\chi_{\rho}, \chi_{\rho}\right\rangle_{G}=\sum_{i=1}^{n} m_{i}^{2}
$$

In particular, $\left\langle\chi_{\rho}, \chi_{\rho}\right\rangle_{G}=1$ if and only if ρ is irreducible.
(iii) If $\chi_{\rho}=\chi_{\rho^{\prime}}$ then $\rho \cong \rho^{\prime}$.
(iv) If $\rho_{1}, \ldots, \rho_{n}$ is a complete list of irreducible representations of G, then

$$
\rho_{\mathrm{reg}} \cong \bigoplus_{i=1}^{n} \rho_{i}^{\oplus \operatorname{dim} \rho_{i}}
$$

and consequently

$$
\sum_{i=1}^{n}\left(\operatorname{dim} \rho_{i}\right)^{2}=|G|
$$

(v) The irreducible characters (i.e., characters of irreducible representations) form an orthonormal basis for $C \ell(G)$. In particular, the number of irreducible characters equals the number of conjugacy classes of G.

Proof. We proved everything last time except for the assertion that the irreducible characters span $C \ell(G)$. We will do this by showing that their orthogonal complement is zero.

Suppose that $f \in C \ell(G)$ is orthogonal to every ρ_{i}, i.e.,

$$
\left\langle f, \chi_{\rho_{i}}\right\rangle_{G}=\frac{1}{|G|} \sum_{g \in G} \overline{f(g)} \chi_{\rho_{i}}(g)=0
$$

We will show that $f=0$.
For any representation ρ, define a map $T_{\rho}=T_{\rho, f}: V \rightarrow V$ by

$$
T_{\rho}(v)=\frac{1}{|G|} \sum_{g \in G} \overline{f(g)} g v
$$

I claim that T_{ρ} is G-equivariant. Indeed, for $h \in G$,

$$
\begin{aligned}
T_{\rho}(h v) & =\frac{1}{|G|} \sum_{g \in G} \overline{f(g)}(g h)(v) \\
& =h \frac{1}{|G|} \sum_{g \in G} \overline{f(g)}\left(h^{-1} g h v\right) \\
& =h \frac{1}{|G|} \sum_{k=h^{-1} g h \in G} \overline{f\left(h k h^{-1}\right)}(k v) \\
& \left.=h \frac{1}{|G|} \sum_{k \in G} \overline{f(k)}(k v) \quad \quad \text { (because } f \in C \ell(G)\right) \\
& =h T_{\rho}(v) .
\end{aligned}
$$

Suppose now that ρ_{i} is irreducible. By Schur's Lemma, $T_{\rho_{i}}$ is multiplication by a scalar. On the other hand, by the definition of f, we have

$$
\begin{aligned}
0=\left\langle f, \chi_{\rho_{i}}\right\rangle_{G} & =\frac{1}{|G|} \sum_{g \in G} \overline{f(g)} \chi_{\rho_{i}}(g) \\
& =\operatorname{tr}\left(\frac{1}{|G|} \sum_{g \in G} \overline{f(g)} \rho_{i}(g)\right) \\
& =\operatorname{tr} T_{\rho_{i}}
\end{aligned}
$$

Therefore $T_{\rho_{i}}=0$ for every irreducible ρ_{i}. Also, T is additive on direct sums (that is, $T_{\rho \oplus \rho^{\prime}}=T_{\rho}+T_{\rho^{\prime}}$), so by Maschke's Theorem, $T_{\rho}=0$ for every representation ρ. In particular

$$
0=T_{\rho_{\mathrm{reg}}}\left(1_{G}\right)=\frac{1}{|G|} \sum_{g \in G} \overline{f(g)} g
$$

It follows that $f(g)=0$ for every $g \in G$, as desired.

One-Dimensional Characters

Let G be a group and ρ a one-dimensional representation; that is, ρ is a group homomorphism $G \rightarrow \mathbb{C}^{\times}$. Note that $\chi_{\rho}=\rho$. Also, if ρ^{\prime} is another one-dimensional representation, then

$$
\rho(g) \rho^{\prime}(g)=\left(\rho \otimes \rho^{\prime}\right)(g)
$$

for all $g \in G$. Thus the group $C h(G)=\operatorname{Hom}\left(G, \mathbb{C}^{\times}\right)$of all one-dimensional characters forms a group under pointwise multiplication. The trivial character is the identity of $C h(G)$, and the inverse of a character ρ is its dual $\rho^{*}=\bar{\rho}$.

Definition 1. The commutator of two elements $a, b \in G$ is the element $[a, b]=a b a^{-1} b^{-1}$. The subgroup of G generated by all commutators is called the commutator subgroup, denoted $[G, G]$.

It is simple to check that $[G, G]$ is in fact a normal subgroup of G. Moreover, $\rho([a, b])=1$ for all $\rho \in C h(G)$ and $a, b \in G$. Therefore, the one-dimensional characters of G are precisely those of the quotient $G^{a b}=$ $G /[G, G]$, the abelianization of G.

Accordingly, we would like to understand the characters of abelian groups.

Let G be an abelian group of finite order n. The conjugacy classes of G are all singleton sets (since $g h g^{-1}=h$ for all $g, h \in G)$, so there are n distinct irreducible representations of G. On the other hand,

$$
\sum_{\chi \text { irreducible }}(\operatorname{dim} \chi)^{2}=n
$$

by Theorem (iv), so in fact every irreducible character is 1-dimensional (and every representation of G is a direct sum of 1-dimensional representations).

Since a 1-dimensional representation equals its character, we just need to describe the homomorphisms $G \rightarrow \mathbb{C}^{\times}$.

The simplest case is that $G=\mathbb{Z} / n \mathbb{Z}$ is cyclic. Write G multiplicatively, and let g be a generator. Then each $\chi \in C h(G)$ is determined by its value on g, which must be some $n^{t h}$ root of unity. There are n possibilities for χ, so all the irreducible characters of G arise in this way, and in fact form a group isomorphic to G.

Now we consider the general case. Every abelian group G can be written as

$$
G \cong \prod_{i=1}^{r} \mathbb{Z} / n_{i} \mathbb{Z}
$$

Let g_{i} be a generator of the $i^{t h}$ factor, and let ζ_{i} be a primitive $\left(n_{i}\right)^{t h}$ root of unity. Then each character χ is determined by the numbers j_{1}, \ldots, j_{r}, where $j_{i} \in \mathbb{Z} / n_{i} \mathbb{Z}$ and $\chi\left(g_{i}\right)=\zeta_{i}^{j_{i}}$. for all i. By now, it should be evident that

$$
\operatorname{Hom}\left(G, \mathbb{C}^{\times}\right) \cong G
$$

an isomorphism known as Pontrjagin duality. More generally, for any group G we have

$$
\begin{equation*}
\operatorname{Hom}\left(G, \mathbb{C}^{\times}\right) \cong G^{a b} \tag{1}
\end{equation*}
$$

This is quite useful when computing irreducible characters, because it tells us right away about the onedimensional characters of an arbitrary group.
Example 1. Consider the case $G=\mathfrak{S}_{n}$. Certainly $\left[\mathfrak{S}_{n}, \mathfrak{S}_{n}\right] \subseteq \mathfrak{A}_{n}$, and in fact equality holds. (This is trivial for $n \leq 2$. If $n \leq 3$, then the equation $(a b)(b c)(a b)(b c)=(a b c)$ in \mathfrak{S}_{n} (multiplying left to right) shows that $\left[\mathfrak{S}_{n}, \mathfrak{S}_{n}\right]$ contains every 3 -cycle, and it is not hard to show that the 3 -cycles generate the full alternating group.) Therefore (1) gives

$$
\operatorname{Hom}\left(\mathfrak{S}_{n}, \mathbb{C}^{\times}\right) \cong \mathfrak{S}_{n} / \mathfrak{A}_{n} \cong \mathbb{Z} / 2 \mathbb{Z}
$$

which says that $\chi_{\text {triv }}$ and $\chi_{\text {sign }}$ are the only one-dimensional characters of \mathfrak{S}_{n}.

