Wednesday 4/16

Irreducible Characters

Theorem 1. Let G be a finite group, and let (ρ, V) and (ρ', V') be finite-dimensional representations of G over \mathbb{C} .

(i) If ρ and ρ' are irreducible, then

$$\left\langle \chi_{\rho}, \, \chi_{\rho'} \right\rangle_{G} = \begin{cases} 1 & \text{if } \rho \cong \rho' \\ 0 & \text{otherwise.} \end{cases}$$

(ii) If ρ_1, \ldots, ρ_n are distinct irreducible representations and

$$\rho = \bigoplus_{i=1}^{n} \left(\underbrace{\rho_i \oplus \cdots \oplus \rho_i}_{m_i} \right) = \bigoplus_{i=1}^{n} \rho_i^{\oplus m}$$

then

$$\left\langle \chi_{\rho}, \, \chi_{\rho_i} \right\rangle_G = m_i, \qquad \left\langle \chi_{\rho}, \, \chi_{\rho} \right\rangle_G = \sum_{i=1}^n m_i^2.$$

In particular, $\langle \chi_{\rho}, \chi_{\rho} \rangle_G = 1$ if and only if ρ is irreducible. (iii) If $\chi_{\rho} = \chi_{\rho'}$ then $\rho \cong \rho'$.

- (iv) If ρ_1, \ldots, ρ_n is a complete list of irreducible representations of G, then

$$\rho_{\rm reg} \cong \bigoplus_{i=1}^n \rho_i^{\oplus \dim \rho_i}$$

and consequently

$$\sum_{i=1}^{n} (\dim \rho_i)^2 = |G|.$$

(v) The irreducible characters (i.e., characters of irreducible representations) form an orthonormal basis for $C\ell(G)$. In particular, the number of irreducible characters equals the number of conjugacy classes of G.

Proof. We proved everything last time except for the assertion that the irreducible characters span $C\ell(G)$. We will do this by showing that their orthogonal complement is zero.

Suppose that $f \in C\ell(G)$ is orthogonal to every ρ_i , i.e.,

$$\langle f, \chi_{\rho_i} \rangle_G = \frac{1}{|G|} \sum_{g \in G} \overline{f(g)} \chi_{\rho_i}(g) = 0.$$

We will show that f = 0.

For any representation ρ , define a map $T_{\rho} = T_{\rho,f} : V \to V$ by

$$T_{\rho}(v) = \frac{1}{|G|} \sum_{g \in G} \overline{f(g)} g v$$

I claim that T_{ρ} is G-equivariant. Indeed, for $h \in G$,

$$\begin{split} T_{\rho}(hv) &= \frac{1}{|G|} \sum_{g \in G} \overline{f(g)}(gh)(v) \\ &= h \frac{1}{|G|} \sum_{g \in G} \overline{f(g)}(h^{-1}ghv) \\ &= h \frac{1}{|G|} \sum_{k=h^{-1}gh \in G} \overline{f(hkh^{-1})}(kv) \\ &= h \frac{1}{|G|} \sum_{k \in G} \overline{f(k)}(kv) \qquad (\text{because } f \in C\ell(G)) \\ &= h T_{\rho}(v). \end{split}$$

Suppose now that ρ_i is irreducible. By Schur's Lemma, T_{ρ_i} is multiplication by a scalar. On the other hand, by the definition of f, we have

$$\begin{array}{lll} 0 &=& \left\langle f,\,\chi_{\rho_i}\right\rangle_G = & \displaystyle\frac{1}{|G|} \displaystyle\sum_{g \in G} \overline{f(g)} \chi_{\rho_i}(g) \\ &=& \displaystyle \mathrm{tr} \left(\displaystyle\frac{1}{|G|} \displaystyle\sum_{g \in G} \overline{f(g)} \rho_i(g) \right) \\ &=& \displaystyle \mathrm{tr} \, T_{\rho_i}. \end{array}$$

Therefore $T_{\rho_i} = 0$ for every irreducible ρ_i . Also, T is additive on direct sums (that is, $T_{\rho \oplus \rho'} = T_{\rho} + T_{\rho'}$), so by Maschke's Theorem, $T_{\rho} = 0$ for every representation ρ . In particular

$$0 = T_{\rho_{\mathrm{reg}}}(1_G) = \frac{1}{|G|} \sum_{g \in G} \overline{f(g)}g.$$

It follows that f(g) = 0 for every $g \in G$, as desired.

One-Dimensional Characters

Let G be a group and ρ a one-dimensional representation; that is, ρ is a group homomorphism $G \to \mathbb{C}^{\times}$. Note that $\chi_{\rho} = \rho$. Also, if ρ' is another one-dimensional representation, then

$$\rho(g)\rho'(g) = (\rho \otimes \rho')(g)$$

for all $g \in G$. Thus the group $Ch(G) = Hom(G, \mathbb{C}^{\times})$ of all one-dimensional characters forms a group under pointwise multiplication. The trivial character is the identity of Ch(G), and the inverse of a character ρ is its dual $\rho^* = \bar{\rho}$.

Definition 1. The commutator of two elements $a, b \in G$ is the element $[a, b] = aba^{-1}b^{-1}$. The subgroup of G generated by all commutators is called the commutator subgroup, denoted [G, G].

It is simple to check that [G, G] is in fact a normal subgroup of G. Moreover, $\rho([a, b]) = 1$ for all $\rho \in Ch(G)$ and $a, b \in G$. Therefore, the one-dimensional characters of G are precisely those of the quotient $G^{ab} = G/[G, G]$, the *abelianization* of G.

Accordingly, we would like to understand the characters of abelian groups.

Let G be an abelian group of finite order n. The conjugacy classes of G are all singleton sets (since $ghg^{-1} = h$ for all $g, h \in G$), so there are n distinct irreducible representations of G. On the other hand,

$$\sum_{\chi \text{ irreducible}} (\dim \chi)^2 = r$$

by Theorem 1 (iv), so in fact every irreducible character is 1-dimensional (and every representation of G is a direct sum of 1-dimensional representations).

Since a 1-dimensional representation equals its character, we just need to describe the homomorphisms $G \to \mathbb{C}^{\times}$.

The simplest case is that $G = \mathbb{Z}/n\mathbb{Z}$ is cyclic. Write G multiplicatively, and let g be a generator. Then each $\chi \in Ch(G)$ is determined by its value on g, which must be some n^{th} root of unity. There are n possibilities for χ , so all the irreducible characters of G arise in this way, and in fact form a group isomorphic to G.

Now we consider the general case. Every abelian group G can be written as

$$G \cong \prod_{i=1}^{r} \mathbb{Z}/n_i \mathbb{Z}.$$

Let g_i be a generator of the i^{th} factor, and let ζ_i be a primitive $(n_i)^{th}$ root of unity. Then each character χ is determined by the numbers j_1, \ldots, j_r , where $j_i \in \mathbb{Z}/n_i\mathbb{Z}$ and $\chi(g_i) = \zeta_i^{j_i}$. for all *i*. By now, it should be evident that

$$\operatorname{Hom}(G, \mathbb{C}^{\times}) \cong G,$$

an isomorphism known as *Pontrjagin duality*. More generally, for any group G we have

(1)
$$\operatorname{Hom}(G, \mathbb{C}^{\times}) \cong G^{ab}$$

This is quite useful when computing irreducible characters, because it tells us right away about the onedimensional characters of an arbitrary group.

Example 1. Consider the case $G = \mathfrak{S}_n$. Certainly $[\mathfrak{S}_n, \mathfrak{S}_n] \subseteq \mathfrak{A}_n$, and in fact equality holds. (This is trivial for $n \leq 2$. If $n \leq 3$, then the equation $(a \ b)(b \ c)(a \ b)(b \ c) = (a \ b \ c)$ in \mathfrak{S}_n (multiplying left to right) shows that $[\mathfrak{S}_n, \mathfrak{S}_n]$ contains every 3-cycle, and it is not hard to show that the 3-cycles generate the full alternating group.) Therefore (1) gives

$$\operatorname{Hom}(\mathfrak{S}_n, \mathbb{C}^{\times}) \cong \mathfrak{S}_n/\mathfrak{A}_n \cong \mathbb{Z}/2\mathbb{Z}$$

which says that χ_{triv} and χ_{sign} are the only one-dimensional characters of \mathfrak{S}_n .