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Let G be a finite group. All representations are finite-dimensional and over C.

Here’s the machinery we developed on Friday:

Character formulas. We proved that

χρ⊕ρ′(g) = χρ(g) + χρ′(g)(1)

χρ∗(g) = χρ(g)(2)

χρ⊗ρ′(g) = χρ(g)χρ′(g)(3)

χHomC(ρ,ρ′)(g) = χρ(g) χρ′(g).(4)

An important missing piece is a formula for the character of HomG(ρ, ρ′).

Fixed spaces. We defined the fixed space of a representation G as V G = {v ∈ V | gv = h ∀g ∈ G}, and
observed that

HomG(V,W ) = HomC(V,W )G.

The inner product. For χ, ψ ∈ Cℓ(G), we defined

〈χ, ψ〉G =
1

|G|

∑

g∈G

χ(g)ψ(g)

and proved the formulas

dimC V
G =

1

|G|

∑

g∈G

χρ(g),(5)

〈
χρ, χρ′

〉

G
= dimC HomG(ρ, ρ′).(6)

Schur’s Lemma and the Orthogonality Relations

What happens when ρ and ρ′ are irreducible representations?

Proposition 1 (Schur’s Lemma). Let G be a group, and let (ρ, V ) and (ρ′, V ′) be finite-dimensional repre-
sentations of G over a field F.

(1) If ρ and ρ′ are irreducible, then every G-equivariant φ : V → V ′ is either zero or an isomorphism.
(2) If in addition F is algebraically closed, then

HomG(V, V ′) ∼=

{

F if ρ ∼= ρ′

0 otherwise.

Proof. For (1), recall that kerφ and imφ are G-invariant subspaces. But since ρ, rho′ are simple, there are
not many possibilities. Either kerφ = 0 and imφ = W , when φ is an isomorphism. Otherwise, kerφ = V or
imφ = 0, either of which implies that φ = 0.

For (2), let φ ∈ HomG(V, V ′). If ρ 6∼= ρ′ then φ = 0 by (1) and we’re done. Otherwise, we may as well assume
that V = V ′.

Since F is algebraically closed, φ has an eigenvalue λ. Then φ − λI is G-equivariant and singular, hence
zero by (1). So φ = λI. We’ve just shown that the only G-equivariant maps from V to itself are scalar
multiplication by some λ. �



Theorem 2. Let (ρ, V ) and (ρ′, V ′) be finite-dimensional representations of G over C.

(i) If ρ and ρ′ are irreducible, then

〈
χρ, χρ′

〉

G
=

{

1 if ρ ∼= ρ′

0 otherwise.

(ii) If ρ1, . . . , ρn are distinct irreducible representations and

ρ =

n⊕

i=1

(ρi ⊕ · ⊕ ρi
︸ ︷︷ ︸

mi

) =

n⊕

i=1

ρ⊕mi

i

then
〈
χρ, χρi

〉

G
= mi,

〈
χρ, χρ

〉

G
=

n∑

i=1

m2
i .

In particular,
〈
χρ, χρ

〉

G
= 1 if and only if ρ is irreducible.

(iii) If χρ = χρ′ then ρ ∼= ρ′.

(iv) If ρ1, . . . , ρn is a complete list of irreducible representations of G, then

ρreg
∼=

n⊕

i=1

ρ
⊕ dim ρi

i

and consequently
n∑

i=1

(dim ρi)
2 = |G|.

(v) The irreducible characters (i.e., characters of irreducible representations) form an orthonormal basis
for Cℓ(G). In particular, the number of irreducible characters equals the number of conjugacy classes
of G.

Example 1. Find all the irreducible characters of S4.

There are five conjugacy classes in S4, corresponding to the cycle-shapes 1111, 211, 22, 31, and 4. The
squares of their dimensions must add up to |S4| = 24. The only list of five positive integers with that
property is 1, 1, 2, 3, 3.

We start by writing down some characters that we know.

Cycle shape 1111 211 22 31 4
Size of conjugacy class 1 6 3 8 6

χ1 = χtriv 1 1 1 1 1
χ2 = χsign 1 −1 1 1 −1

χdef 4 2 0 1 0
χreg 24 0 0 0 0

Of course χtriv and χsign are irreducible (since they are 1-dimensional). On the other hand, χdef can’t be
irreducible because S4 doesn’t have a 4-dimensional irrep. Indeed,

〈χdef , χdef〉G = 2

which means that ρdef must be a direct sum of two distinct irreps. (If it were the direct sum of two copies
of the unique 2-dimensional irrep, then 〈χdef , χdef〉G would be 4, not 2, by (ii) of Theorem 2.) We calculate

〈χdef , χtriv〉G = 1,
〈
χdef , χsign

〉

G
= 0.

Therefore χ3 = χdef − χtriv is an irreducible character.

The other 3-dimensional irreducible character is χ4 = χ3 ⊗ χsign; we can check that 〈χ4, χ4〉G = 1.



The other irreducible character χ5 has dimension 2. We can calculate it from the regular character and the
other four irreducibles, because

χreg = (χ1 + χ2) + 3(χ3 + χ4) + 2χ5

.

So here is the complete character table of S4:

Cycle shape 1111 211 22 31 4
Size of conjugacy class 1 6 3 8 6

χ1 1 1 1 1 1
χ2 1 −1 1 1 −1
χ3 3 1 −1 0 −1
χ4 3 −1 −1 0 1
χ5 2 0 2 −1 0

Now, the proof of Theorem 2.

Assertion (i) follows from part (2) of Schur’s Lemma together with Proposition 6, and (ii) follows because the
inner product is bilinear on direct sums. For (iii), Maschke’s Lemma says that every complex representation
ρ can be written as a direct sum of irreducibles. Their multiplicities determine ρ up to isomorphism, and
can be recovered from χρ by assertion (ii).

For (iv), recall that χreg(1G) = |G| and χreg(g) = 0 for g 6= 1G. Therefore

〈
χreg, ρi

〉

G
=

1

|G|

∑

g∈G

χreg(g)ρi(g) =
1

|G|
|G|ρi(1G) = dim ρi

so ρi appears in ρreg with multiplicity equal to its dimension.

That the irreducible characters are orthonormal (hence linearly independent in Cℓ(G)) follows from Schur’s
Lemma together with assertion (3). The hard part is to show that they in fact span Cℓ(G). We will do this
next time.


