Monday 4/14

Let G be a finite group. All representations are finite-dimensional and over \mathbb{C}.
Here's the machinery we developed on Friday:
Character formulas. We proved that

$$
\begin{align*}
\chi_{\rho \oplus \rho^{\prime}}(g) & =\chi_{\rho}(g)+\chi_{\rho^{\prime}}(g) \tag{1}\\
\chi_{\rho^{*}}(g) & =\overline{\chi_{\rho}(g)} \tag{2}\\
\chi_{\rho \otimes \rho^{\prime}}(g) & =\chi_{\rho}(g) \chi_{\rho^{\prime}}(g) \tag{3}\\
\chi_{\operatorname{Hom}_{\mathbb{C}}\left(\rho, \rho^{\prime}\right)}(g) & =\overline{\chi_{\rho}(g)} \chi_{\rho^{\prime}}(g) . \tag{4}
\end{align*}
$$

An important missing piece is a formula for the character of $\operatorname{Hom}_{G}\left(\rho, \rho^{\prime}\right)$.
Fixed spaces. We defined the fixed space of a representation G as $V^{G}=\{v \in V \mid g v=h \forall g \in G\}$, and observed that

$$
\operatorname{Hom}_{G}(V, W)=\operatorname{Hom}_{\mathbb{C}}(V, W)^{G}
$$

The inner product. For $\chi, \psi \in C \ell(G)$, we defined

$$
\langle\chi, \psi\rangle_{G}=\frac{1}{|G|} \sum_{g \in G} \overline{\chi(g)} \psi(g)
$$

and proved the formulas

$$
\begin{align*}
\operatorname{dim}_{\mathbb{C}} V^{G} & =\frac{1}{|G|} \sum_{g \in G} \chi_{\rho}(g) \tag{5}\\
\left\langle\chi_{\rho}, \chi_{\rho^{\prime}}\right\rangle_{G} & =\operatorname{dim}_{\mathbb{C}} \operatorname{Hom}_{G}\left(\rho, \rho^{\prime}\right) \tag{6}
\end{align*}
$$

Schur's Lemma and the Orthogonality Relations

What happens when ρ and ρ^{\prime} are irreducible representations?
Proposition 1 (Schur's Lemma). Let G be a group, and let (ρ, V) and ($\left.\rho^{\prime}, V^{\prime}\right)$ be finite-dimensional representations of G over a field \mathbb{F}.
(1) If ρ and ρ^{\prime} are irreducible, then every G-equivariant $\phi: V \rightarrow V^{\prime}$ is either zero or an isomorphism.
(2) If in addition \mathbb{F} is algebraically closed, then

$$
\operatorname{Hom}_{G}\left(V, V^{\prime}\right) \cong \begin{cases}\mathbb{F} & \text { if } \rho \cong \rho^{\prime} \\ 0 & \text { otherwise }\end{cases}
$$

Proof. For (1), recall that $\operatorname{ker} \phi$ and $\operatorname{im} \phi$ are G-invariant subspaces. But since $\rho, r h o^{\prime}$ are simple, there are not many possibilities. Either $\operatorname{ker} \phi=0$ and $\operatorname{im} \phi=W$, when ϕ is an isomorphism. Otherwise, $\operatorname{ker} \phi=V$ or $\operatorname{im} \phi=0$, either of which implies that $\phi=0$.

For (2), let $\phi \in \operatorname{Hom}_{G}\left(V, V^{\prime}\right)$. If $\rho \not \approx \rho^{\prime}$ then $\phi=0$ by (1) and we're done. Otherwise, we may as well assume that $V=V^{\prime}$.

Since \mathbb{F} is algebraically closed, ϕ has an eigenvalue λ. Then $\phi-\lambda I$ is G-equivariant and singular, hence zero by (1). So $\phi=\lambda I$. We've just shown that the only G-equivariant maps from V to itself are scalar multiplication by some λ.

Theorem 2. Let (ρ, V) and $\left(\rho^{\prime}, V^{\prime}\right)$ be finite-dimensional representations of G over \mathbb{C}.
(i) If ρ and ρ^{\prime} are irreducible, then

$$
\left\langle\chi_{\rho}, \chi_{\rho^{\prime}}\right\rangle_{G}= \begin{cases}1 & \text { if } \rho \cong \rho^{\prime} \\ 0 & \text { otherwise }\end{cases}
$$

(ii) If $\rho_{1}, \ldots, \rho_{n}$ are distinct irreducible representations and

$$
\rho=\bigoplus_{i=1}^{n}(\underbrace{\rho_{i} \oplus \cdot \oplus \rho_{i}}_{m_{i}})=\bigoplus_{i=1}^{n} \rho_{i}^{\oplus m_{i}}
$$

then

$$
\left\langle\chi_{\rho}, \chi_{\rho_{i}}\right\rangle_{G}=m_{i}, \quad\left\langle\chi_{\rho}, \chi_{\rho}\right\rangle_{G}=\sum_{i=1}^{n} m_{i}^{2}
$$

In particular, $\left\langle\chi_{\rho}, \chi_{\rho}\right\rangle_{G}=1$ if and only if ρ is irreducible.
(iii) If $\chi_{\rho}=\chi_{\rho^{\prime}}$ then $\rho \cong \rho^{\prime}$.
(iv) If $\rho_{1}, \ldots, \rho_{n}$ is a complete list of irreducible representations of G, then

$$
\rho_{\mathrm{reg}} \cong \bigoplus_{i=1}^{n} \rho_{i}^{\oplus \operatorname{dim} \rho_{i}}
$$

and consequently

$$
\sum_{i=1}^{n}\left(\operatorname{dim} \rho_{i}\right)^{2}=|G| .
$$

(v) The irreducible characters (i.e., characters of irreducible representations) form an orthonormal basis for $C \ell(G)$. In particular, the number of irreducible characters equals the number of conjugacy classes of G.

Example 1. Find all the irreducible characters of \mathfrak{S}_{4}.
There are five conjugacy classes in \mathfrak{S}_{4}, corresponding to the cycle-shapes $1111,211,22,31$, and 4 . The squares of their dimensions must add up to $\left|\mathfrak{S}_{4}\right|=24$. The only list of five positive integers with that property is $1,1,2,3,3$.

We start by writing down some characters that we know.

Cycle shape	1111	211	22	31	4
Size of conjugacy class	1	6	3	8	6
$\chi_{1}=\chi_{\text {triv }}$	1	1	1	1	1
$\chi_{2}=\chi_{\text {sign }}$	1	-1	1	1	-1
$\chi_{\text {def }}$	4	2	0	1	0
$\chi_{\text {reg }}$	24	0	0	0	0

Of course $\chi_{\text {triv }}$ and $\chi_{\text {sign }}$ are irreducible (since they are 1-dimensional). On the other hand, $\chi_{\text {def }}$ can't be irreducible because \mathfrak{S}_{4} doesn't have a 4-dimensional irrep. Indeed,

$$
\left\langle\chi_{\mathrm{def}}, \chi_{\mathrm{def}}\right\rangle_{G}=2
$$

which means that $\rho_{\text {def }}$ must be a direct sum of two distinct irreps. (If it were the direct sum of two copies of the unique 2-dimensional irrep, then $\left\langle\chi_{\text {def }}, \chi_{\text {def }}\right\rangle_{G}$ would be 4 , not 2, by (ii) of Theorem 2) We calculate

$$
\left\langle\chi_{\text {def }}, \chi_{\text {triv }}\right\rangle_{G}=1, \quad\left\langle\chi_{\text {def }}, \chi_{\text {sign }}\right\rangle_{G}=0
$$

Therefore $\chi_{3}=\chi_{\text {def }}-\chi_{\text {triv }}$ is an irreducible character.
The other 3-dimensional irreducible character is $\chi_{4}=\chi_{3} \otimes \chi_{\text {sign }}$; we can check that $\left\langle\chi_{4}, \chi_{4}\right\rangle_{G}=1$.

The other irreducible character χ_{5} has dimension 2 . We can calculate it from the regular character and the other four irreducibles, because

$$
\chi_{\mathrm{reg}}=\left(\chi_{1}+\chi_{2}\right)+3\left(\chi_{3}+\chi_{4}\right)+2 \chi_{5}
$$

So here is the complete character table of \mathfrak{S}_{4} :

Cycle shape	1111	211	22	31	4
Size of conjugacy class	1	6	3	8	6
χ_{1}	1	1	1	1	1
χ_{2}	1	-1	1	1	-1
χ_{3}	3	1	-1	0	-1
χ_{4}	3	-1	-1	0	1
χ_{5}	2	0	2	-1	0

Now, the proof of Theorem 2
Assertion (i) follows from part (2) of Schur's Lemma together with Proposition 6] (ii) follows because the inner product is bilinear on direct sums. For (iii), Maschke's Lemma says that every complex representation ρ can be written as a direct sum of irreducibles. Their multiplicities determine ρ up to isomorphism, and can be recovered from χ_{ρ} by assertion (ii).

For (iv), recall that $\chi_{\text {reg }}\left(1_{G}\right)=|G|$ and $\chi_{\text {reg }}(g)=0$ for $g \neq 1_{G}$. Therefore

$$
\left\langle\chi_{\mathrm{reg}}, \rho_{i}\right\rangle_{G}=\frac{1}{|G|} \sum_{g \in G} \overline{\chi_{\mathrm{reg}}(g)} \rho_{i}(g)=\frac{1}{|G|}|G| \rho_{i}\left(1_{G}\right)=\operatorname{dim} \rho_{i}
$$

so ρ_{i} appears in $\rho_{\text {reg }}$ with multiplicity equal to its dimension.
That the irreducible characters are orthonormal (hence linearly independent in $C \ell(G))$ follows from Schur's Lemma together with assertion (3). The hard part is to show that they in fact span $C \ell(G)$. We will do this next time.

