Friday 4/11

Until further notice, G is still a finite group and all representations are finite-dimensional over \mathbb{C} .

New Characters from Old

In order to investigate characters, we need to know how standard vector space (or, in fact, G-module) functors such as \oplus and \otimes affect the corresponding characters.

Throughout, let (ρ, V) , (ρ', V') be representations of G, with $V \cap V' = \emptyset$.

1. Direct sum.

To construct a basis for $V \oplus V'$, we can take the union of a basis for V and a basis for V'. Equivalently, we can write the vectors in $V \oplus V'$ as column block vectors:

$$V \oplus V' = \left\{ \begin{bmatrix} v \\ v' \end{bmatrix} \mid v \in V, \ v' \in V' \right\}.$$

Accordingly, define $(\rho \oplus \rho', V \oplus V')$ by

$$(\rho \oplus \rho')(h) = \left[\begin{array}{c|c} \rho(h) & 0\\ \hline 0 & \rho'(h) \end{array} \right].$$

 $\chi_{\rho\oplus\rho'}(h)=\chi_\rho(h)+\chi_{\rho'}(h).$

From this it is clear that

(1)

2. Duality.

Recall that the *dual space* V^* of V consists of all \mathbb{F} -linear transformations $\phi : V \to \mathbb{F}$. Given a representation (ρ, V) , there is a natural action of G on V^* defined by

$$(h\phi)(v) = \phi(h^{-1}v)$$

for $h \in G$, $\phi \in V^*$, $v \in V$. (You need to define it this way in order for $h\phi$ to be a homomorphism — try it.) This is called the **dual representation** (or **contragredient representation** ρ^* .

Proposition: For every $h \in G$,

(2)
$$\chi_{\rho^*}(h) = \overline{\chi_{\rho}(h)}.$$

Proof. Choose a basis $\{v_1, \ldots, v_n\}$ of V consisting of eigenvectors of h (since we are working over \mathbb{C}); say $hv_i = \lambda_i v_i$.

In this basis, $\rho(h) = \text{diag}(\lambda_i)$ (i.e., the diagonal matrix whose entries are the λ_i), and in the dual basis, $\rho^*(h) = \text{diag}(\lambda_i^{-1})$.

On the other hand, some power of $\rho(h)$ is the identity matrix, so each λ_i must be a root of unity, so its inverse is just its complex conjugate.

3. Tensor product.

Recall that if $\{v_1, \ldots, v_n\}$, $\{v'_1, \ldots, v'_m\}$ are bases for V, V' respectively, then $V \otimes V'$ can be defined as the vector space with basis

$$\{v_i \otimes v'_j \mid 1 \le i \le n, \ 1 \le j \le m\}$$

In particular, $\dim V \otimes V' = (\dim V)(\dim V')$.

Accordingly, define a representation $(\rho \otimes \rho', V \otimes V')$ by

$$(\rho \otimes \rho')(h)(v \otimes v') = \rho(h)v \otimes v' + v \otimes \rho'(h)v'$$

or more concisely

$$h \cdot (v \otimes v') = (hv) \otimes v' + v \otimes (hv')$$

extended bilinearly to all of $V \otimes V'$.

In terms of matrices, $(\rho \otimes \rho')(h)$ is represented by the block matrix

	$a_{11}B$	$a_{11}B$	•••	$a_{1n}B$
	$a_{21}B$	$a_{22}B$	• • •	$a_{2n}B$
	:	÷		$ \begin{array}{c} a_{1n}B\\ a_{2n}B\\ \vdots\\ a_{nn}B \end{array} $
	$a_{n1}B$	$a_{n2}B$		$a_{nn}B$
where $\rho(h) = [a_{ij}]_{i,j=1n}$ and $\rho'(h) = B$. In particular,				
(3)	$\chi_{\rho\otimes\rho'}(h)=\chi_{\rho}(h)\chi_{\rho'}(h).$			

4. <u>Hom.</u>

Recall that $\operatorname{Hom}_G(V, V') = \operatorname{Hom}_G(\rho, \rho')$ is the vector space of all *G*-equivariant maps $\rho \to \rho'$.

Meanwhile, $\operatorname{Hom}_{\mathbb{C}}(V, W)$ can be made into a *G*-module by

(4)
$$(h \cdot \phi)(v) = h(\phi(h^{-1}v)) = \rho'(h) \Big(\phi(\rho(h^{-1})(v)) \Big)$$

for $h \in G$, $\phi \in \operatorname{Hom}_{\mathbb{C}}(V, W)$, $v \in V$. (That is, h sends ϕ to the map $h \cdot \phi$ which acts on V as above.) You can then verify that this is a genuine group action.

In general, when G acts on a vector space V, the subspace of G-invariants is defined as

$$V^G = \{ v \in V \mid hv = h \ \forall h \in G \}.$$

In our current setup, a map ϕ is G-equivariant if and only if $h \cdot \phi = \phi$ for all $h \in G$ (proof left to the reader). That is,

(5)
$$\operatorname{Hom}_{G}(V,W) = \operatorname{Hom}_{\mathbb{C}}(V,W)^{G}.$$

Moreover, $\operatorname{Hom}_{\mathbb{C}}(V, W) \cong V^* \otimes W$ as vector spaces, so

(6)
$$\chi_{\operatorname{Hom}(\rho,\rho')}(h) = \overline{\chi_{\rho}(h)} \ \chi_{\rho'}(h).$$

The Inner Product

Recall that a **class function** is a function $\chi: G \to \mathbb{C}$ that is constant on conjugacy classes of G. Define an inner product on the vector space $C\ell(G)$ of class functions by

$$\langle \chi, \psi \rangle_G = \frac{1}{|G|} \sum_{h \in G} \overline{\chi(h)} \psi(h).$$

Proposition 1. With this setup,

$$\dim_{\mathbb{C}} V^G = \frac{1}{|G|} \sum_{h \in G} \chi_{\rho}(h) = \left\langle \chi_{\text{triv}}, \, \chi_{\rho} \right\rangle_G$$

Proof. Define a linear map $\pi: V \to V$ by

$$\pi = \frac{1}{|G|} \sum_{h \in G} \rho(h).$$

In fact, $\pi(v) \in V^G$ for all $v \in V$, and if $v \in V^G$ then $\pi(v) = v$. That is, π is a projection from $V \to V^G$, and can be represented by the block matrix

$$\begin{bmatrix} I & 0 \\ * & 0 \end{bmatrix}$$

where the first and second column blocks (resp., row blocks) correspond to V^G and $(V^G)^{\perp}$ respectively. is now evident that $\dim_{\mathbb{C}} V^G = \operatorname{tr} \pi$, giving the first equality. The second equality follows because V^G is just the direct sum of all copies of the trivial representation occurring as *G*-invariant subspaces of *V*.

Example 1. Suppose that ρ is a permutation representation. Then V^G is the space of functions that are constant on the orbits. Therefore, the formula becomes

number of orbits
$$= \frac{1}{|G|} \sum_{h \in G}$$
 number of fixed points of h

which is Burnside's Lemma.

 $\langle \cdot \rangle$

Proposition 2. $\langle \chi_{\rho}, \chi_{\rho'} \rangle_G = \dim_{\mathbb{C}} \operatorname{Hom}_G(\rho, \rho').$

Proof.

$$\begin{split} \chi_{\rho}, \ \chi_{\rho'} \rangle_{G} &= \frac{1}{|G|} \sum_{h \in G} \overline{\chi_{\rho}(h)} \chi_{\rho'}(h) \\ &= \frac{1}{|G|} \sum_{h \in G} \chi_{\operatorname{Hom}(\rho, \rho')}(h) & \text{(by (6))} \\ &= \dim_{\mathbb{C}} \operatorname{Hom}(\rho, \rho')^{G} & \text{(by Proposition 1)} \\ &= \dim_{\mathbb{C}} \operatorname{Hom}_{G}(\rho, \rho') & \text{(by (5)).} \end{split}$$