Friday 4/11

Until further notice, G is still a finite group and all representations are finite-dimensional over \mathbb{C}.

New Characters from Old

In order to investigate characters, we need to know how standard vector space (or, in fact, G-module) functors such as \oplus and \otimes affect the corresponding characters.

Throughout, let $(\rho, V),\left(\rho^{\prime}, V^{\prime}\right)$ be representations of G, with $V \cap V^{\prime}=\emptyset$.

1. Direct sum.

To construct a basis for $V \oplus V^{\prime}$, we can take the union of a basis for V and a bais for V^{\prime}. Equivalently, we can write the vectors in $V \oplus V^{\prime}$ as column block vectors:

$$
V \oplus V^{\prime}=\left\{\left.\left[\begin{array}{c}
v \\
v^{\prime}
\end{array}\right] \right\rvert\, v \in V, v^{\prime} \in V^{\prime}\right\} .
$$

Accordingly, define $\left(\rho \oplus \rho^{\prime}, V \oplus V^{\prime}\right)$ by

$$
\left(\rho \oplus \rho^{\prime}\right)(h)=\left[\begin{array}{c|c}
\rho(h) & 0 \\
\hline 0 & \rho^{\prime}(h)
\end{array}\right] .
$$

From this it is clear that

$$
\begin{equation*}
\chi_{\rho \oplus \rho^{\prime}}(h)=\chi_{\rho}(h)+\chi_{\rho^{\prime}}(h) . \tag{1}
\end{equation*}
$$

2. Duality.

Recall that the dual space V^{*} of V consists of all \mathbb{F}-linear transformations $\phi: V \rightarrow \mathbb{F}$. Given a representation (ρ, V), there is a natural action of G on V^{*} defined by

$$
(h \phi)(v)=\phi\left(h^{-1} v\right)
$$

for $h \in G, \phi \in V^{*}, v \in V$. (You need to define it this way in order for $h \phi$ to be a homomorphism - try it.) This is called the dual representation (or contragredient representation ρ^{*}.

Proposition: For every $h \in G$,

$$
\begin{equation*}
\chi_{\rho^{*}}(h)=\overline{\chi_{\rho}(h)} . \tag{2}
\end{equation*}
$$

Proof. Choose a basis $\left\{v_{1}, \ldots, v_{n}\right\}$ of V consisting of eigenvectors of h (since we are working over \mathbb{C}); say $h v_{i}=\lambda_{i} v_{i}$.

In this basis, $\rho(h)=\operatorname{diag}\left(\lambda_{i}\right)$ (i.e., the diagonal matrix whose entries are the λ_{i}), and in the dual basis, $\rho^{*}(h)=\operatorname{diag}\left(\lambda_{i}^{-1}\right)$.

On the other hand, some power of $\rho(h)$ is the identity matrix, so each λ_{i} must be a root of unity, so its inverse is just its complex conjugate.

3. Tensor product.

Recall that if $\left\{v_{1}, \ldots, v_{n}\right\},\left\{v_{1}^{\prime}, \ldots, v_{m}^{\prime}\right\}$ are bases for V, V^{\prime} respectively, then $V \otimes V^{\prime}$ can be defined as the vector space with basis

$$
\left\{v_{i} \otimes v_{j}^{\prime} \mid 1 \leq i \leq n, 1 \leq j \leq m\right\}
$$

In particular, $\operatorname{dim} V \otimes V^{\prime}=(\operatorname{dim} V)\left(\operatorname{dim} V^{\prime}\right)$.
Accordingly, define a representation $\left(\rho \otimes \rho^{\prime}, V \otimes V^{\prime}\right)$ by

$$
\left(\rho \otimes \rho^{\prime}\right)(h)\left(v \otimes v^{\prime}\right)=\rho(h) v \otimes v^{\prime}+v \otimes \rho^{\prime}(h) v^{\prime}
$$

or more concisely

$$
h \cdot\left(v \otimes v^{\prime}\right)=(h v) \otimes v^{\prime}+v \otimes\left(h v^{\prime}\right)
$$

extended bilinearly to all of $V \otimes V^{\prime}$.
In terms of matrices, $\left(\rho \otimes \rho^{\prime}\right)(h)$ is represented by the block matrix

$$
\left[\begin{array}{cccc}
a_{11} B & a_{11} B & \cdots & a_{1 n} B \\
a_{21} B & a_{22} B & \cdots & a_{2 n} B \\
\vdots & \vdots & & \vdots \\
a_{n 1} B & a_{n 2} B & \cdots & a_{n n} B
\end{array}\right]
$$

where $\rho(h)=\left[a_{i j}\right]_{i, j=1 \ldots n}$ and $\rho^{\prime}(h)=B$. In particular,

$$
\begin{equation*}
\chi_{\rho \otimes \rho^{\prime}}(h)=\chi_{\rho}(h) \chi_{\rho^{\prime}}(h) \tag{3}
\end{equation*}
$$

4. Hom.

Recall that $\operatorname{Hom}_{G}\left(V, V^{\prime}\right)=\operatorname{Hom}_{G}\left(\rho, \rho^{\prime}\right)$ is the vector space of all G-equivariant maps $\rho \rightarrow \rho^{\prime}$.
Meanwhile, $\operatorname{Hom}_{\mathbb{C}}(V, W)$ can be made into a G-module by

$$
\begin{equation*}
(h \cdot \phi)(v)=h\left(\phi\left(h^{-1} v\right)\right)=\rho^{\prime}(h)\left(\phi\left(\rho\left(h^{-1}\right)(v)\right)\right) \tag{4}
\end{equation*}
$$

for $h \in G, \phi \in \operatorname{Hom}_{\mathbb{C}}(V, W), v \in V$. (That is, h sends ϕ to the map $h \cdot \phi$ which acts on V as above.) You can then verify that this is a genuine group action.

In general, when G acts on a vector space V, the subspace of G-invariants is defined as

$$
V^{G}=\{v \in V \mid h v=h \forall h \in G\} .
$$

In our current setup, a map ϕ is G-equivariant if and only if $h \cdot \phi=\phi$ for all $h \in G$ (proof left to the reader). That is,

$$
\begin{equation*}
\operatorname{Hom}_{G}(V, W)=\operatorname{Hom}_{\mathbb{C}}(V, W)^{G} \tag{5}
\end{equation*}
$$

Moreover, $\operatorname{Hom}_{\mathbb{C}}(V, W) \cong V^{*} \otimes W$ as vector spaces, so

$$
\begin{equation*}
\chi_{\operatorname{Hom}\left(\rho, \rho^{\prime}\right)}(h)=\overline{\chi_{\rho}(h)} \chi_{\rho^{\prime}}(h) \tag{6}
\end{equation*}
$$

The Inner Product

Recall that a class function is a function $\chi: G \rightarrow \mathbb{C}$ that is constant on conjugacy classes of G. Define an inner product on the vector space $C \ell(G)$ of class functions by

$$
\langle\chi, \psi\rangle_{G}=\frac{1}{|G|} \sum_{h \in G} \overline{\chi(h)} \psi(h) .
$$

Proposition 1. With this setup,

$$
\operatorname{dim}_{\mathbb{C}} V^{G}=\frac{1}{|G|} \sum_{h \in G} \chi_{\rho}(h)=\left\langle\chi_{\text {triv }}, \chi_{\rho}\right\rangle_{G} .
$$

Proof. Define a linear map $\pi: V \rightarrow V$ by

$$
\pi=\frac{1}{|G|} \sum_{h \in G} \rho(h) .
$$

In fact, $\pi(v) \in V^{G}$ for all $v \in V$, and if $v \in V^{G}$ then $\pi(v)=v$. That is, π is a projection from $V \rightarrow V^{G}$, and can be represented by the block matrix

$$
\left[\begin{array}{c|c}
I & 0 \\
\hline * & 0
\end{array}\right]
$$

where the first and second column blocks (resp., row blocks) correspond to V^{G} and $\left(V^{G}\right)^{\perp}$ respectively. is now evident that $\operatorname{dim}_{\mathbb{C}} V^{G}=\operatorname{tr} \pi$, giving the first equality. The second equality follows because V^{G} is just the direct sum of all copies of the trivial representation occurring as G-invariant subspaces of V.

Example 1. Suppose that ρ is a permutation representation. Then V^{G} is the space of functions that are constant on the orbits. Therefore, the formula becomes

$$
\text { number of orbits }=\frac{1}{|G|} \sum_{h \in G} \text { number of fixed points of } h
$$

which is Burnside's Lemma.
Proposition 2. $\left\langle\chi_{\rho}, \chi_{\rho^{\prime}}\right\rangle_{G}=\operatorname{dim}_{\mathbb{C}} \operatorname{Hom}_{G}\left(\rho, \rho^{\prime}\right)$.
Proof.

$$
\begin{aligned}
\left\langle\chi_{\rho}, \chi_{\rho^{\prime}}\right\rangle_{G} & =\frac{1}{|G|} \sum_{h \in G} \overline{\chi_{\rho}(h)} \chi_{\rho^{\prime}}(h) & & \\
& =\frac{1}{|G|} \sum_{h \in G} \chi_{\operatorname{Hom}\left(\rho, \rho^{\prime}\right)}(h) & & \text { (by (6) (6)) } \\
& =\operatorname{dim}_{\mathbb{C}} \operatorname{Hom}\left(\rho, \rho^{\prime}\right)^{G} & & \text { (by Proposition (1) } \\
& =\operatorname{dim}_{\mathbb{C}} \operatorname{Hom}_{G}\left(\rho, \rho^{\prime}\right) & & \text { (by (50)). }
\end{aligned}
$$

