Wednesday 4/9

Irreducibility, Indecomposability and Maschke's Theorem

Today, G is a finite group and all representations are finite-dimensional.

Definition 1. Let (ρ, V) be a representation of G. A vector subspace $W \subset V$ is G-invariant if $\rho(g)W \subset W$ (equivalently, if W is a G-submodule of V). V is irreducible (or simple, or colloquially an "irrep") if it has no proper G-invariant subspace.

For instance, any 1-dimensional representation is clearly irreducible.

It would be nice if every G-invariant subspace W had a G-invariant complement, i.e., another G-invariant subspace W^{\perp} such that $W \cap W^{\perp} = 0$ and $W + W^{\perp} = V$. However, funny things can happen in positive characteristic.

Example 1. Let $\{e_1, e_2\}$ be the standard basis for \mathbb{F}^2 . Recall that the defining representation of $\mathfrak{S}_2 = \{12, 21\}$ is given by

$$\rho_{\rm def}(12) = \begin{bmatrix} 1 & 0\\ 0 & 1 \end{bmatrix}, \qquad \rho_{\rm def}(21) = \begin{bmatrix} 0 & 1\\ 1 & 0 \end{bmatrix}$$

and that

$$\rho_{\rm def}(g)(e_1 + e_2) = \rho_{\rm triv}(g)(e_1 + e_2), \qquad \rho_{\rm def}(g)(e_1 - e_2) = \rho_{\rm sign}(g)(e_1 - e_2).$$

Therefore, as we saw last time, the change of basis map

$$\phi = \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix}^{-1} = \begin{bmatrix} \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & -\frac{1}{2} \end{bmatrix}^{-1}$$

is a G-equivariant isomorphism between ρ_{def} and $\rho_{\text{triv}} \oplus \rho_{\text{sign}} - \underline{\text{unless }} \mathbb{F}$ has characteristic 2. In that case, $W = \text{span}\{e_1 + e_2\}$ is certainly G-invariant, but it has no G-invariant complement. D'oh!

Definition 2. The representation V is **decomposable** if there are G-invariant subspaces W, W^{\perp} with $W \cap W^{\perp} = 0$ and $W + W^{\perp} = V$. Otherwise, V is **indecomposable**.

Clearly every representation can be written as the direct sum of indecomposables. Moreover, irreducible implies indecomposable. But the converse is not true in general, as Example 1 illustrates.

Fortunately, this kind of pathology does not happen in characteristic 0. Indeed, something stronger is true.

Theorem 1 (Maschke's Theorem). Let G be a finite group, and let \mathbb{F} be a field whose characteristic does not divide |G|. Then every representation $\rho : G \to GL(V)$ is completely reducible, that is, every G-invariant subspace has an invariant complement.

Proof. If ρ is an irreducible representation, then there is nothing to prove. Otherwise, let W be a G-invariant subspace, and let

 $\pi:V\to W$

be any projection (i.e., a surjective linear transformation, with nothing assumed about its behavior with respect to ρ).

For $v \in V$, define

(1)
$$\pi_G(v) = \frac{1}{|G|} \sum_{g \in G} g \pi(g^{-1}v).$$

Then $\pi_G(v) \in W$ because W is G-invariant. Moreover, for $h \in G$, we have

$$\pi_G(hv) = \frac{1}{|G|} \sum_{g \in G} g\pi(g^{-1}hv)$$

= $\frac{1}{|G|} \sum_{g \in G} (hg)\pi((hg)^{-1}hv)$
= $\frac{1}{|G|} h \sum_{g \in G} g\pi(g^{-1}v) = h\pi_G(v),$

that is, π_G is *G*-equivariant.

Now, define $W^{\perp} = \ker \pi_G$. Certainly $V \cong W \oplus W^{\perp}$ as vector spaces, and by *G*-equivariance, if $v \in W^{\perp}$ and $g \in G$, then $\pi_G(gv) = g\pi_G(v) = 0$, i.e., $gv \in W^{\perp}$. That is, W^{\perp} is *G*-invariant.

Maschke's Theorem implies that a representation ρ is determined up to isomorphism by the multiplicity of each irreducible representation in ρ . By the way, implicit in the proof is the following useful fact:

Proposition 2. Any G-equivariant map has a G-equivariant kernel and G-equivariant image.

Characters

Definition 3. Let (ρ, V) be a representation of G over \mathbb{F} . Its *character* is the function $\chi_{\rho} : G \to \mathbb{F}$ given by

$$\chi_{\rho}(g) = \operatorname{tr} \rho(g).$$

Example 2. Some simple facts and some characters we've seen before:

- (1) A one-dimensional representation is its own character.
- (2) For any representation ρ , we have $\chi_{\rho}(1) = \dim \rho$, because $\rho(1)$ is the $n \times n$ identity matrix.
- (3) The defining representation ρ_{def} of \mathfrak{S}_n has character

 $\chi_{\text{def}}(\sigma) = \text{number of fixed points of } \sigma.$

(4) The regular representation $\rho_{\rm reg}$ has character

$$\chi_{\rm reg}(\sigma) = \begin{cases} |G| & \text{if } \sigma = 1_G \\ 0 & \text{otherwise.} \end{cases}$$

Example 3. Consider the two-dimensional representation ρ of the dihedral group $D_n = \langle r, s | r^n = s^2 = 0, srs = r^{-1} \rangle$ by rotations and reflections:

$$\rho(s) = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}, \qquad \qquad \rho(r) = \begin{bmatrix} \cos\theta & \sin\theta \\ -\sin\theta & \cos\theta \end{bmatrix}$$

Its character is

$$\chi_{\rho}(r^{i}) = 2\cos i\theta \quad (0 \le i < n), \qquad \qquad \chi_{\rho}(sr^{i}) = 0 \quad (0 \le j < n).$$

On the other hand, if ρ' is the *n*-dimensional permutation representation on the vertices, then its character is

 $\chi_{\rho'}(g) = \begin{cases} n \text{ if } g = 1, \\ 0 \text{ if } g \text{ is a nontrivial rotation,} \\ 1 \text{ if } n \text{ is odd and } g \text{ is a reflection,} \\ 0 \text{ if } n \text{ is even and } g \text{ is a reflection through two edges,} \\ 2 \text{ if } n \text{ is even and } g \text{ is a reflection through two vertices.} \end{cases}$

Proposition 3. Characters are class functions; that is, they are constant on conjugacy classes of G. Moreover, if $\rho \cong \rho'$, then $\chi_{\rho} = \chi_{\rho'}$.

Proof. Recall from linear algebra that $tr(ABA^{-1}) = tr(B)$ in general. Therefore,

$$\operatorname{tr}\left(\rho(hgh^{-1})\right) \;=\; \operatorname{tr}\left(\rho(h)\rho(g)\rho(h^{-1})\right) \;=\; \operatorname{tr}\left(\rho(h)\rho(g)\rho(h)^{-1}\right) \;=\; \operatorname{tr}\rho(g).$$

For the second assertion, let $\phi : \rho \to \rho'$ be an isomorphism, i.e., $\phi \cdot \rho(g) = \rho'(g) \cdot \phi$ for all $g \in G$ (treating ϕ as a matrix in this notation). Since ϕ is invertible, we have therefore $\phi \cdot \rho(g) \cdot \phi^{-1} = \rho'(g)$. Now take traces.

What we'd really like is the converse of this second assertion. In fact, much, much more is true. From now on, we consider only representations over \mathbb{C} .

Theorem 4. Let G be any finite group.

- (1) If $\chi_{\rho} = \chi_{\rho'}$, then $\rho \cong \rho'$. That is, a representation is determined up to isomorphism by its character.
- (2) The characters of irreducible representations form a basis for the vector space $C\ell(G)$ of all class functions of G. Moreover, this basis is orthonormal with respect to the natural Hermitian inner product defined by

$$\langle f, f' \rangle_G = \frac{1}{|G|} \sum_{g \in G} \overline{f(g)} f'(g).$$

(The bar denotes complex conjugate.)

- (3) As a consequence, the number of different irreducible representations of G equals the number of conjugacy classes.
- (4) The regular representation ρ_{reg} satisfies

$$\rho_{\rm reg} \cong \bigoplus_{\rm irreps } \rho^{\oplus \dim \rho}$$

so in particular

$$|G| = \sum_{\text{irreps } \rho} (\dim \rho)^2.$$

Example 4. The group $G = \mathfrak{S}_3$ has three conjugacy classes, determined by cycle shapes:

$$C_1 = \{1_G\}, \qquad C_2 = \{(12), (13), (23)\}, \qquad C_3 = \{(123), (132)\}.$$

We'll notate a character χ by the bracketed triple $[\chi(C_1), \chi(C_2), \chi(C_3)]$.

We know two irreducible 1-dimensional characters of \mathfrak{S}_3 , namely the trivial character $\chi_{\text{triv}} = [1, 1, 1]$ and the sign character $\chi_{\text{sign}} = [1, -1, 1]$.

Note that

$$\langle \chi_{\rm triv}, \chi_{\rm triv} \rangle = 1, \qquad \langle \chi_{\rm sign}, \chi_{\rm sign} \rangle = 1, \qquad \langle \chi_{\rm triv}, \chi_{\rm sign} \rangle = 0.$$

Consider the defining representation. Its character is $\chi_{def} = [3, 1, 0]$, and

$$\begin{aligned} \langle \chi_{\rm triv}, \ \chi_{\rm def} \rangle &= \frac{1}{6} \sum_{j=1}^{3} |C_j| \cdot \overline{\chi_{\rm triv}(C_j)} \cdot \chi_{\rm def}(C_j) \\ &= \frac{1}{6} \left(1 \cdot 1 \cdot 3 + 3 \cdot 1 \cdot 1 + 2 \cdot 1 \cdot 0 \right) = 1, \\ \langle \chi_{\rm sign}, \ \chi_{\rm def} \rangle &= \frac{1}{6} \sum_{j=1}^{3} |C_j| \cdot \overline{\chi_{\rm triv}(C_j)} \cdot \chi_{\rm def}(C_j) \\ &= \frac{1}{6} \left(1 \cdot 1 \cdot 3 - 3 \cdot 1 \cdot 1 + 2 \cdot 1 \cdot 0 \right) = 0. \end{aligned}$$

This tells us that ρ_{def} contains one copy of the trivial representation as a summand, and no copies of the sign representation. If we get rid of the trivial summand, the remaining two-dimensional representation ρ has character $\chi_{\rho} = \chi_{\text{def}} - \chi_{\text{triv}} = [2, 0, -1].$

Since

$$\langle \chi_{\rho}, \chi_{\rho} \rangle = \frac{1(2 \cdot 2) + 3(0 \cdot 0) + 2(-1 \cdot -1)}{6} = 1,$$

it follows that ρ is irreducible. So, up to isomorphism, \mathfrak{S}_3 has two distinct one-dimensional representations $\rho_{\text{triv}}, \rho_{\text{sign}}$ and one two-dimensional representation ρ . Note also that

 $\chi_{\rm triv} + \chi_{\rm sign} + 2\chi_{\rho} = [1, 1, 1] + [1, -1, 1] + 2[2, 0, -1] = [6, 0, 0] = \chi_{\rm reg}.$

New Characters from Old

In order to investigate characters, we need to know how standard vector space (or, in fact, *G*-module) functors such as \oplus and \otimes affect the corresponding characters. Throughout, let (ρ, V) , (ρ', V') be representations of *G*, with $V \cap V' = \emptyset$.

1. <u>Direct sum</u>. The vectors in $V \oplus V'$ can be regarded as column block vectors $\begin{bmatrix} v \\ v' \end{bmatrix}$, for $v \in V$, $v' \in V'$. Accordingly, define $(\rho \oplus \rho', V \oplus V')$ by

$$(\rho \oplus \rho')(h) = \left[\begin{array}{c|c} \rho(h) & 0\\ \hline 0 & \rho'(h) \end{array} \right]$$

It is clear that

(2) $\chi_{\rho\oplus\rho'} = \chi_{\rho} + \chi_{\rho'}.$

Next time: Tensor product, dual, and Hom.