Wednesday 4/9

Irreducibility, Indecomposability and Maschke's Theorem

Today, G is a finite group and all representations are finite-dimensional.
Definition 1. Let (ρ, V) be a representation of G. A vector subspace $W \subset V$ is G-invariant if $\rho(g) W \subset W$ (equivalently, if W is a G-submodule of V). V is irreducible (or simple, or colloquially an "irrep") if it has no proper G-invariant subspace.

For instance, any 1-dimensional representation is clearly irreducible.
It would be nice if every G-invariant subspace W had a G-invariant complement, i.e., another G-invariant subspace W^{\perp} such that $W \cap W^{\perp}=0$ and $W+W^{\perp}=V$. However, funny things can happen in positive characteristic.

Example 1. Let $\left\{e_{1}, e_{2}\right\}$ be the standard basis for \mathbb{F}^{2}. Recall that the defining representation of $\mathfrak{S}_{2}=$ $\{12,21\}$ is given by

$$
\rho_{\mathrm{def}}(12)=\left[\begin{array}{cc}
1 & 0 \\
0 & 1
\end{array}\right], \quad \rho_{\mathrm{def}}(21)=\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right]
$$

and that

$$
\rho_{\mathrm{def}}(g)\left(e_{1}+e_{2}\right)=\rho_{\text {triv }}(g)\left(e_{1}+e_{2}\right), \quad \rho_{\mathrm{def}}(g)\left(e_{1}-e_{2}\right)=\rho_{\mathrm{sign}}(g)\left(e_{1}-e_{2}\right)
$$

Therefore, as we saw last time, the change of basis map

$$
\phi=\left[\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right]^{-1}=\left[\begin{array}{cc}
\frac{1}{2} & \frac{1}{2} \\
\frac{1}{2} & -\frac{1}{2}
\end{array}\right]^{-1}
$$

is a G-equivariant isomorphism between $\rho_{\text {def }}$ and $\rho_{\text {triv }} \oplus \rho_{\text {sign }}$ - unless \mathbb{F} has characteristic 2. In that case, $W=\operatorname{span}\left\{e_{1}+e_{2}\right\}$ is certainly G-invariant, but it has no G-invariant complement. D'oh!

Definition 2. The representation V is decomposable if there are G-invariant subspaces W, W^{\perp} with $W \cap W^{\perp}=0$ and $W+W^{\perp}=V$. Otherwise, V is indecomposable.

Clearly every representation can be written as the direct sum of indecomposables. Moreover, irreducible implies indecomposable. But the converse is not true in general, as Example 1 illustrates.

Fortunately, this kind of pathology does not happen in characteristic 0 . Indeed, something stronger is true.
Theorem 1 (Maschke's Theorem). Let G be a finite group, and let \mathbb{F} be a field whose characteristic does not divide $|G|$. Then every representation $\rho: G \rightarrow G L(V)$ is completely reducible, that is, every G-invariant subspace has an invariant complement.

Proof. If ρ is an irreducible representation, then there is nothing to prove. Otherwise, let W be a G-invariant subspace, and let

$$
\pi: V \rightarrow W
$$

be any projection (i.e., a surjective linear transformation, with nothing assumed about its behavior with respect to ρ).

For $v \in V$, define

$$
\begin{equation*}
\pi_{G}(v)=\frac{1}{|G|} \sum_{g \in G} g \pi\left(g^{-1} v\right) \tag{1}
\end{equation*}
$$

Then $\pi_{G}(v) \in W$ because W is G-invariant. Moreover, for $h \in G$, we have

$$
\begin{aligned}
\pi_{G}(h v) & =\frac{1}{|G|} \sum_{g \in G} g \pi\left(g^{-1} h v\right) \\
& =\frac{1}{|G|} \sum_{g \in G}(h g) \pi\left((h g)^{-1} h v\right) \\
& =\frac{1}{|G|} h \sum_{g \in G} g \pi\left(g^{-1} v\right)=h \pi_{G}(v)
\end{aligned}
$$

that is, π_{G} is G-equivariant.
Now, define $W^{\perp}=\operatorname{ker} \pi_{G}$. Certainly $V \cong W \oplus W^{\perp}$ as vector spaces, and by G-equivariance, if $v \in W^{\perp}$ and $g \in G$, then $\pi_{G}(g v)=g \pi_{G}(v)=0$, i.e., $g v \in W^{\perp}$. That is, W^{\perp} is G-invariant.

Maschke's Theorem implies that a representation ρ is determined up to isomorphism by the multiplicity of each irreducible representation in ρ. By the way, implicit in the proof is the following useful fact:
Proposition 2. Any G-equivariant map has a G-equivariant kernel and G-equivariant image.

Characters

Definition 3. Let (ρ, V) be a representation of G over \mathbb{F}. Its character is the function $\chi_{\rho}: G \rightarrow \mathbb{F}$ given by

$$
\chi_{\rho}(g)=\operatorname{tr} \rho(g)
$$

Example 2. Some simple facts and some characters we've seen before:
(1) A one-dimensional representation is its own character.
(2) For any representation ρ, we have $\chi_{\rho}(1)=\operatorname{dim} \rho$, because $\rho(1)$ is the $n \times n$ identity matrix.
(3) The defining representation $\rho_{\text {def }}$ of \mathfrak{S}_{n} has character

$$
\chi_{\mathrm{def}}(\sigma)=\text { number of fixed points of } \sigma
$$

(4) The regular representation $\rho_{\text {reg }}$ has character

$$
\chi_{\mathrm{reg}}(\sigma)= \begin{cases}|G| & \text { if } \sigma=1_{G} \\ 0 & \text { otherwise }\end{cases}
$$

Example 3. Consider the two-dimensional representation ρ of the dihedral group $D_{n}=\langle r, s| r^{n}=s^{2}=$ 0, srs $\left.=r^{-1}\right\rangle$ by rotations and reflections:

$$
\rho(s)=\left[\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right], \quad \rho(r)=\left[\begin{array}{cc}
\cos \theta & \sin \theta \\
-\sin \theta & \cos \theta
\end{array}\right]
$$

Its character is

$$
\chi_{\rho}\left(r^{i}\right)=2 \cos i \theta \quad(0 \leq i<n), \quad \chi_{\rho}\left(s r^{i}\right)=0 \quad(0 \leq j<n)
$$

On the other hand, if ρ^{\prime} is the n-dimensional permutation representation on the vertices, then its character is

$$
\chi_{\rho^{\prime}}(g)=\left\{\begin{array}{l}
n \text { if } g=1, \\
0 \text { if } g \text { is a nontrivial rotation, } \\
1 \text { if } n \text { is odd and } g \text { is a reflection, } \\
0 \text { if } n \text { is even and } g \text { is a reflection through two edges, } \\
2 \text { if } n \text { is even and } g \text { is a reflection through two vertices. }
\end{array}\right.
$$

One fixed point

No fixed points

Two fixed points

Proposition 3. Characters are class functions; that is, they are constant on conjugacy classes of G. Moreover, if $\rho \cong \rho^{\prime}$, then $\chi_{\rho}=\chi_{\rho^{\prime}}$.

Proof. Recall from linear algebra that $\operatorname{tr}\left(A B A^{-1}\right)=\operatorname{tr}(B)$ in general. Therefore,

$$
\operatorname{tr}\left(\rho\left(h g h^{-1}\right)\right)=\operatorname{tr}\left(\rho(h) \rho(g) \rho\left(h^{-1}\right)\right)=\operatorname{tr}\left(\rho(h) \rho(g) \rho(h)^{-1}\right)=\operatorname{tr} \rho(g)
$$

For the second assertion, let $\phi: \rho \rightarrow \rho^{\prime}$ be an isomorphism, i.e., $\phi \cdot \rho(g)=\rho^{\prime}(g) \cdot \phi$ for all $g \in G$ (treating ϕ as a matrix in this notation). Since ϕ is invertible, we have therefore $\phi \cdot \rho(g) \cdot \phi^{-1}=\rho^{\prime}(g)$. Now take traces.

What we'd really like is the converse of this second assertion. In fact, much, much more is true. From now on, we consider only representations over \mathbb{C}.

Theorem 4. Let G be any finite group.
(1) If $\chi_{\rho}=\chi_{\rho^{\prime}}$, then $\rho \cong \rho^{\prime}$. That is, a representation is determined up to isomorphism by its character.
(2) The characters of irreducible representations form a basis for the vector space $C \ell(G)$ of all class functions of G. Moreover, this basis is orthonormal with respect to the natural Hermitian inner product defined by

$$
\left\langle f, f^{\prime}\right\rangle_{G}=\frac{1}{|G|} \sum_{g \in G} \overline{f(g)} f^{\prime}(g)
$$

(The bar denotes complex conjugate.)
(3) As a consequence, the number of different irreducible representations of G equals the number of conjugacy classes.
(4) The regular representation $\rho_{\text {reg }}$ satisfies

$$
\rho_{\mathrm{reg}} \cong \bigoplus_{\text {irreps }} \rho^{\oplus \operatorname{dim} \rho}
$$

so in particular

$$
|G|=\sum_{\text {irreps } \rho}(\operatorname{dim} \rho)^{2}
$$

Example 4. The group $G=\mathfrak{S}_{3}$ has three conjugacy classes, determined by cycle shapes:

$$
C_{1}=\left\{1_{G}\right\}, \quad C_{2}=\{(12),(13),(23)\}, \quad C_{3}=\{(123),(132)\}
$$

We'll notate a character χ by the bracketed triple $\left[\chi\left(C_{1}\right), \chi\left(C_{2}\right), \chi\left(C_{3}\right)\right]$.
We know two irreducible 1-dimensional characters of \mathfrak{S}_{3}, namely the trivial character $\chi_{\text {triv }}=[1,1,1]$ and the sign character $\chi_{\text {sign }}=[1,-1,1]$.

Note that

$$
\left\langle\chi_{\text {triv }}, \chi_{\text {triv }}\right\rangle=1, \quad\left\langle\chi_{\text {sign }}, \chi_{\text {sign }}\right\rangle=1, \quad\left\langle\chi_{\text {triv }}, \chi_{\text {sign }}\right\rangle=0
$$

Consider the defining representation. Its character is $\chi_{\text {def }}=[3,1,0]$, and

$$
\begin{aligned}
\left\langle\chi_{\text {triv }}, \chi_{\text {def }}\right\rangle & =\frac{1}{6} \sum_{j=1}^{3}\left|C_{j}\right| \cdot \overline{\chi_{\text {triv }}\left(C_{j}\right)} \cdot \chi_{\text {def }}\left(C_{j}\right) \\
& =\frac{1}{6}(1 \cdot 1 \cdot 3+3 \cdot 1 \cdot 1+2 \cdot 1 \cdot 0)=1, \\
\left\langle\chi_{\text {sign }}, \chi_{\text {def }}\right\rangle & =\frac{1}{6} \sum_{j=1}^{3}\left|C_{j}\right| \cdot \overline{\chi_{\text {triv }}\left(C_{j}\right)} \cdot \chi_{\text {def }}\left(C_{j}\right) \\
& =\frac{1}{6}(1 \cdot 1 \cdot 3-3 \cdot 1 \cdot 1+2 \cdot 1 \cdot 0)=0 .
\end{aligned}
$$

This tells us that $\rho_{\text {def }}$ contains one copy of the trivial representation as a summand, and no copies of the sign representation. If we get rid of the trivial summand, the remaining two-dimensional representation ρ has character $\chi_{\rho}=\chi_{\text {def }}-\chi_{\text {triv }}=[2,0,-1]$.

Since

$$
\left\langle\chi_{\rho}, \chi_{\rho}\right\rangle=\frac{1(2 \cdot 2)+3(0 \cdot 0)+2(-1 \cdot-1)}{6}=1
$$

it follows that ρ is irreducible. So, up to isomorphism, \mathfrak{S}_{3} has two distinct one-dimensional representations $\rho_{\text {triv }}, \rho_{\text {sign }}$ and one two-dimensional representation ρ. Note also that

$$
\chi_{\text {triv }}+\chi_{\text {sign }}+2 \chi_{\rho}=[1,1,1]+[1,-1,1]+2[2,0,-1]=[6,0,0]=\chi_{\text {reg }} .
$$

New Characters from Old

In order to investigate characters, we need to know how standard vector space (or, in fact, G-module) functors such as \oplus and \otimes affect the corresponding characters. Throughout, let $(\rho, V),\left(\rho^{\prime}, V^{\prime}\right)$ be representations of G, with $V \cap V^{\prime}=\emptyset$.

1. Direct sum. The vectors in $V \oplus V^{\prime}$ can be regarded as column block vectors $\left[\begin{array}{c}v \\ v^{\prime}\end{array}\right]$, for $v \in V, v^{\prime} \in V^{\prime}$. Accordingly, define $\left(\rho \oplus \rho^{\prime}, V \oplus V^{\prime}\right)$ by

$$
\left(\rho \oplus \rho^{\prime}\right)(h)=\left[\begin{array}{c|c}
\rho(h) & 0 \\
\hline 0 & \rho^{\prime}(h)
\end{array}\right] .
$$

It is clear that

$$
\begin{equation*}
\chi_{\rho \oplus \rho^{\prime}}=\chi_{\rho}+\chi_{\rho^{\prime}} \tag{2}
\end{equation*}
$$

Next time: Tensor product, dual, and Hom.

