Wednesday 4/9

Irreducibility, Indecomposability and Maschke’s Theorem

Today, G is a finite group and all representations are finite-dimensional.

Definition 1. Let (p, V) be a representation of G. A vector subspace W C V is G-invariant if p(g)W C W
(equivalently, if W is a G-submodule of V). V is irreducible (or simple, or colloquially an “irrep”) if it
has no proper G-invariant subspace.

For instance, any 1-dimensional representation is clearly irreducible.

It would be nice if every G-invariant subspace W had a G-invariant complement, i.e., another G-invariant
subspace W= such that W N W+, =0 and W + W+ = V. However, funny things can happen in positive
characteristic.

Example 1. Let {ej,ea} be the standard basis for F2. Recall that the defining representation of Gy =
{12,21} is given by
10 0 1
pdef(12) = [0 1] ) paef(21) = L O}
and that
paet(g)(e1 + e2) = puiv(g)(e1 + e2), pdet(g)(€1 — €2) = psign(g)(e1 — €2).
Therefore, as we saw last time, the change of basis map
1 7-1
2
_1
2

o~ 47|

is a G-equivariant isomorphism between pqer and periv @ psign — unless F has characteristic 2. In that case,
W = span{e; + ea} is certainly G-invariant, but it has no G-invariant complement. D’oh!

NI= N

Definition 2. The representation V is decomposable if there are G-invariant subspaces W, W+ with
WNWL =0and W+ WL =V. Otherwise, V is indecomposable.

Clearly every representation can be written as the direct sum of indecomposables. Moreover, irreducible
implies indecomposable. But the converse is not true in general, as Example [ illustrates.

Fortunately, this kind of pathology does not happen in characteristic 0. Indeed, something stronger is true.

Theorem 1 (Maschke’s Theorem). Let G be a finite group, and let F be a field whose characteristic does not
divide |G|. Then every representation p : G — GL(V) is completely reducible, that is, every G-invariant
subspace has an invariant complement.

Proof. If p is an irreducible representation, then there is nothing to prove. Otherwise, let W be a G-invariant
subspace, and let
TV -W

be any projection (i.e., a surjective linear transformation, with nothing assumed about its behavior with
respect to p).

For v € V', define
1 _
(1) Ta(v) = @l > gm(g™ ).
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Then mg(v) € W because W is G-invariant. Moreover, for h € G, we have

1 _
T (hv) = @ Z gm(yg 1h”)
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= & 2 ha)((ha)~ b
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1
:@hzgﬂ(g’lv) = hmg(v),
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that is, mg is G-equivariant.
Now, define W+ = ker . Certainly V = W @ W+ as vector spaces, and by G-equivariance, if v € W+ and
g € G, then 7g(gv) = gng(v) =0, i.e., gv € W+, That is, W+ is G-invariant. O

Maschke’s Theorem implies that a representation p is determined up to isomorphism by the multiplicity of
each irreducible representation in p. By the way, implicit in the proof is the following useful fact:

Proposition 2. Any G-equivariant map has a G-equivariant kernel and G-equivariant image.

Characters

Definition 3. Let (p, V') be a representation of G over F. Its character is the function x, : G — [ given by
Xp(9) = tr p(g).

Example 2. Some simple facts and some characters we’ve seen before:

(1) A one-dimensional representation is its own character.

2) For any representation p, we have x,(1) = dim p, because p(1) is the n x n identity matrix.
P

(3) The defining representation pger of &, has character

Xdef(0) = number of fixed points of o.
(4) The regular representation preg has character
(0) |G| ifo=1¢g
reg\0) =
Xreg 0 otherwise.
2 _

Example 3. Consider the two-dimensional representation p of the dihedral group D,, = (r,s | " = s* =
0,srs = r—1) by rotations and reflections:

(s) = 1 0 (r) = cosf sinf
P =10 —1]° PU) = _ginf cosf
Its character is _ _
Xp(r') =2cosif (0 <i<n), Xp(sr') =0 (0<j<n).

On the other hand, if p’ is the n-dimensional permutation representation on the vertices, then its character
is
nifg=1,
0 if g is a nontrivial rotation,
Xp(9) = ¢ 1if nis odd and g is a reflection,
0 if n is even and g is a reflection through two edges,

2 if n is even and g is a reflection through two vertices.



One fixed point No fixed points Two fixed points

Proposition 3. Characters are class functions; that is, they are constant on conjugacy classes of G. More-
over, if p = p', then x, = X, -

Proof. Recall from linear algebra that tr(ABA~!) = tr(B) in general. Therefore,

tr (p(hgh™)) = tr (p(h)p(g)p(h ™)) = tr (p(h)p(g)p(h)~") = trp(g).
For the second assertion, let ¢ : p — p’ be an isomorphism, i.e., ¢ - p(g) = p'(g) - ¢ for all g € G (treating
d) 1

¢ as a matrix in this notation). Since ¢ is invertible, we have therefore ¢ plg) - = p'(g). Now take
traces. O

What we’d really like is the converse of this second assertion. In fact, much, much more is true. From now
on, we consider only representations over C.

Theorem 4. Let G be any finite group.

(1) If xp = xp, then p = p’'. That is, a representation is determined up to isomorphism by its character.
(2) The characters of irreducible representations form a basis for the vector space CL(G) of all class
functions of G. Moreover, this basis is orthonormal with respect to the natural Hermitian inner
product defined by
(f, f f(g
|G| >_ 79
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(The bar denotes complex conjugate.)

(3) As a consequence, the number of different irreducible representations of G equals the number of
conjugacy classes.
(4) The regular representation preg Satisfies

~ & dim p
pre = D p
irreps p

so in particular

Gl= Y (dimp)*

irreps p
Example 4. The group G = &3 has three conjugacy classes, determined by cycle shapes:
Ci={la},  Ca={(2), (13), @3)},  Cs={(123), (132)}.
We'll notate a character x by the bracketed triple [x(C1), x(C2), x(C3)].

We know two irreducible 1-dimensional characters of &3, namely the trivial character xtiv = [1,1,1] and
the sign character xsign = [1, —1, 1].

Note that
<Xtriv7 Xtriv> = 1a <Xsign7 Xsign> = 1a <Xtriv7 Xsign> =0.



Consider the defining representation. Its character is x4t = [3,1,0], and
1< _
<XtriV7 Xdcf> = 6 Z |OJ| : Xtriv(cj) . Xdcf(Cj)
j=1

1
=g 13431 142:1:0) = 1,

3
1 -
<Xsign7 Xdef> = = |C]| . Xtriv(cj) . Xdef(Cj)
6
j=1
1
26(1-1~3—3-1~1+2-1-0) = 0.
This tells us that pgqet contains one copy of the trivial representation as a summand, and no copies of the
sign representation. If we get rid of the trivial summand, the remaining two-dimensional representation p
has character x, = Xdef — Xtriv = (2,0, —1].

Since

e o) = 1(2-2)+3(0~2)+2(—1-—1) 1,

it follows that p is irreducible. So, up to isomorphism, G3 has two distinct one-dimensional representations
Ptriv, Psign and one two-dimensional representation p. Note also that

Xtriv + Xsign + 2Xp = [L 17 1] + [L _1a 1] + 2[27 Oa _1] = [67()’ O] = Xreg-

New Characters from Old

In order to investigate characters, we need to know how standard vector space (or, in fact, G-module) functors
such as @ and ® affect the corresponding characters. Throughout, let (p, V'), (p’, V') be representations of
G, with VNV’ =0.

1. Direct sum. The vectors in V & V' can be regarded as column block vectors [5,], forveV, v eV.
Accordingly, define (p @ p’,V & V') by

ey | p(h) |0
(p@p)(h) = |: 0 o (h) :| .
It is clear that

(2) Xp@p' = Xp + Xp-

Next time: Tensor product, dual, and Hom.



