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Irreducibility, Indecomposability and Maschke’s Theorem

Today, G is a finite group and all representations are finite-dimensional.

Definition 1. Let (ρ, V ) be a representation of G. A vector subspace W ⊂ V is G-invariant if ρ(g)W ⊂ W

(equivalently, if W is a G-submodule of V ). V is irreducible (or simple, or colloquially an “irrep”) if it
has no proper G-invariant subspace.

For instance, any 1-dimensional representation is clearly irreducible.

It would be nice if every G-invariant subspace W had a G-invariant complement, i.e., another G-invariant
subspace W⊥ such that W ∩ W⊥ = 0 and W + W⊥ = V . However, funny things can happen in positive
characteristic.

Example 1. Let {e1, e2} be the standard basis for F
2. Recall that the defining representation of S2 =

{12, 21} is given by

ρdef(12) =

[

1 0
0 1

]

, ρdef(21) =

[

0 1
1 0

]

and that
ρdef(g)(e1 + e2) = ρtriv(g)(e1 + e2), ρdef(g)(e1 − e2) = ρsign(g)(e1 − e2).

Therefore, as we saw last time, the change of basis map

φ =

[

1 1
1 −1

]−1

=

[

1
2

1
2

1
2

− 1
2

]−1

is a G-equivariant isomorphism between ρdef and ρtriv ⊕ ρsign — unless F has characteristic 2. In that case,
W = span{e1 + e2} is certainly G-invariant, but it has no G-invariant complement. D’oh!

Definition 2. The representation V is decomposable if there are G-invariant subspaces W, W ⊥ with
W ∩ W⊥ = 0 and W + W⊥ = V . Otherwise, V is indecomposable.

Clearly every representation can be written as the direct sum of indecomposables. Moreover, irreducible
implies indecomposable. But the converse is not true in general, as Example 1 illustrates.

Fortunately, this kind of pathology does not happen in characteristic 0. Indeed, something stronger is true.

Theorem 1 (Maschke’s Theorem). Let G be a finite group, and let F be a field whose characteristic does not
divide |G|. Then every representation ρ : G → GL(V ) is completely reducible, that is, every G-invariant
subspace has an invariant complement.

Proof. If ρ is an irreducible representation, then there is nothing to prove. Otherwise, let W be a G-invariant
subspace, and let

π : V → W

be any projection (i.e., a surjective linear transformation, with nothing assumed about its behavior with
respect to ρ).

For v ∈ V , define

(1) πG(v) =
1

|G|

∑

g∈G

gπ(g−1v).



Then πG(v) ∈ W because W is G-invariant. Moreover, for h ∈ G, we have

πG(hv) =
1

|G|

∑

g∈G

gπ(g−1hv)

=
1

|G|

∑

g∈G

(hg)π((hg)−1hv)

=
1

|G|
h

∑

g∈G

gπ(g−1v) = hπG(v),

that is, πG is G-equivariant.

Now, define W⊥ = kerπG. Certainly V ∼= W ⊕W⊥ as vector spaces, and by G-equivariance, if v ∈ W⊥ and
g ∈ G, then πG(gv) = gπG(v) = 0, i.e., gv ∈ W⊥. That is, W⊥ is G-invariant. �

Maschke’s Theorem implies that a representation ρ is determined up to isomorphism by the multiplicity of
each irreducible representation in ρ. By the way, implicit in the proof is the following useful fact:

Proposition 2. Any G-equivariant map has a G-equivariant kernel and G-equivariant image.

Characters

Definition 3. Let (ρ, V ) be a representation of G over F. Its character is the function χρ : G → F given by

χρ(g) = tr ρ(g).

Example 2. Some simple facts and some characters we’ve seen before:

(1) A one-dimensional representation is its own character.
(2) For any representation ρ, we have χρ(1) = dim ρ, because ρ(1) is the n × n identity matrix.
(3) The defining representation ρdef of Sn has character

χdef(σ) = number of fixed points of σ.

(4) The regular representation ρreg has character

χreg(σ) =

{

|G| if σ = 1G

0 otherwise.

Example 3. Consider the two-dimensional representation ρ of the dihedral group Dn = 〈r, s | rn = s2 =
0, srs = r−1〉 by rotations and reflections:

ρ(s) =

[

1 0
0 −1

]

, ρ(r) =

[

cos θ sin θ

− sin θ cos θ

]

Its character is
χρ(r

i) = 2 cos iθ (0 ≤ i < n), χρ(sr
i) = 0 (0 ≤ j < n).

On the other hand, if ρ′ is the n-dimensional permutation representation on the vertices, then its character
is

χρ′(g) =































n if g = 1,

0 if g is a nontrivial rotation,

1 if n is odd and g is a reflection,

0 if n is even and g is a reflection through two edges,

2 if n is even and g is a reflection through two vertices.



No fixed points Two fixed pointsOne fixed point

Proposition 3. Characters are class functions; that is, they are constant on conjugacy classes of G. More-
over, if ρ ∼= ρ′, then χρ = χρ′ .

Proof. Recall from linear algebra that tr(ABA−1) = tr(B) in general. Therefore,

tr
(

ρ(hgh−1)
)

= tr
(

ρ(h)ρ(g)ρ(h−1)
)

= tr
(

ρ(h)ρ(g)ρ(h)−1
)

= tr ρ(g).

For the second assertion, let φ : ρ → ρ′ be an isomorphism, i.e., φ · ρ(g) = ρ′(g) · φ for all g ∈ G (treating
φ as a matrix in this notation). Since φ is invertible, we have therefore φ · ρ(g) · φ−1 = ρ′(g). Now take
traces. �

What we’d really like is the converse of this second assertion. In fact, much, much more is true. From now
on, we consider only representations over C.

Theorem 4. Let G be any finite group.

(1) If χρ = χρ′ , then ρ ∼= ρ′. That is, a representation is determined up to isomorphism by its character.
(2) The characters of irreducible representations form a basis for the vector space C`(G) of all class

functions of G. Moreover, this basis is orthonormal with respect to the natural Hermitian inner
product defined by

〈f, f ′〉G =
1

|G|

∑

g∈G

f(g)f ′(g).

(The bar denotes complex conjugate.)
(3) As a consequence, the number of different irreducible representations of G equals the number of

conjugacy classes.
(4) The regular representation ρreg satisfies

ρreg
∼=

⊕

irreps ρ

ρ⊕ dimρ

so in particular

|G| =
∑

irreps ρ

(dim ρ)2.

Example 4. The group G = S3 has three conjugacy classes, determined by cycle shapes:

C1 = {1G}, C2 = {(12), (13), (23)}, C3 = {(123), (132)}.

We’ll notate a character χ by the bracketed triple [χ(C1), χ(C2), χ(C3)].

We know two irreducible 1-dimensional characters of S3, namely the trivial character χtriv = [1, 1, 1] and
the sign character χsign = [1,−1, 1].

Note that
〈χtriv, χtriv〉 = 1, 〈χsign, χsign〉 = 1, 〈χtriv, χsign〉 = 0.



Consider the defining representation. Its character is χdef = [3, 1, 0], and

〈χtriv, χdef〉 =
1

6

3
∑

j=1

|Cj | · χtriv(Cj) · χdef(Cj)

=
1

6
(1 · 1 · 3 + 3 · 1 · 1 + 2 · 1 · 0) = 1,

〈χsign, χdef〉 =
1

6

3
∑

j=1

|Cj | · χtriv(Cj) · χdef(Cj)

=
1

6
(1 · 1 · 3 − 3 · 1 · 1 + 2 · 1 · 0) = 0.

This tells us that ρdef contains one copy of the trivial representation as a summand, and no copies of the
sign representation. If we get rid of the trivial summand, the remaining two-dimensional representation ρ

has character χρ = χdef − χtriv = [2, 0,−1].

Since

〈χρ, χρ〉 =
1(2 · 2) + 3(0 · 0) + 2(−1 · −1)

6
= 1,

it follows that ρ is irreducible. So, up to isomorphism, S3 has two distinct one-dimensional representations
ρtriv, ρsign and one two-dimensional representation ρ. Note also that

χtriv + χsign + 2χρ = [1, 1, 1] + [1,−1, 1] + 2[2, 0,−1] = [6, 0, 0] = χreg.

New Characters from Old

In order to investigate characters, we need to know how standard vector space (or, in fact, G-module) functors
such as ⊕ and ⊗ affect the corresponding characters. Throughout, let (ρ, V ), (ρ′, V ′) be representations of
G, with V ∩ V ′ = ∅.

1. Direct sum. The vectors in V ⊕ V ′ can be regarded as column block vectors

[

v

v′

]

, for v ∈ V , v′ ∈ V ′.

Accordingly, define (ρ ⊕ ρ′, V ⊕ V ′) by

(ρ ⊕ ρ′)(h) =

[

ρ(h) 0
0 ρ′(h)

]

.

It is clear that

(2) χρ⊕ρ′ = χρ + χρ′ .

Next time: Tensor product, dual, and Hom.


