Monday $4 / 7$

Group Representations

Definition 1. Let G be a group and let $V \cong \mathbb{F}^{n}$ be a finite-dimensional vector space over a field \mathbb{F}. A representation of G on V is a group homomorphism $\rho: G \rightarrow G L(V)$. That is, for each $g \in G$ there is an invertible $n \times n$ matrix $\rho(g)$, satisfying

$$
\rho(g) \rho(h)=\rho(g h) \quad \forall g, h \in G .
$$

(That's matrix multiplication on the left side of the equation, and group multiplication in G on the right.) The number n is called the dimension (or degree) of the representation.

- ρ specifies an action of G on V that respects its vector space structure.
- We often abuse terminology by saying that ρ is a representation, or that V is a representation, or that the pair (ρ, V) is a representation.
- ρ is a permutation representation if $\rho(g)$ is a permutation matrix for all $g \in G$.
- ρ is faithful if it is injective as a group homomorphism.

Example 1 (The regular representation). Let G be a finite group with n elements, and let $\mathbb{F} G$ be the vector space of formal \mathbb{F}-linear combinations of elements of G : that is,

$$
\mathbb{F} G=\left\{\sum_{h \in G} a_{h} h \mid a_{h} \in \mathbb{F}\right\} .
$$

Then there is a representation ρ_{reg} of G on $\mathbb{F} G$, called the regular representation, defined by

$$
g\left(\sum_{h \in G} a_{h} h\right)=\sum_{h \in G} a_{h}(g h)
$$

That is, g permutes the standard basis vectors of $\mathbb{F} G$ according to the group multiplication law.
Example 2 (The defining representation of \mathfrak{S}_{n}). Let $G=\mathfrak{S}_{n}$, the symmetric group on n elements. Then we can represent each permutation $\sigma \in G$ by the permutation matrix with 1 's in the positions $(i, \sigma(i))$ for every $i \in[n]$, and 0 's elsewhere. For instance, the permutation $4716253 \in \mathfrak{S}_{7}$ corresponds to the permutation matrix

$$
\left[\begin{array}{lllllll}
0 & 0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 \\
1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 & 0
\end{array}\right] .
$$

Example 3. For any group G, the trivial representation is defined by $\rho_{\text {triv }}(g)=I_{n}$ (the $n \times n$ identity matrix).

Example 4. Let $G=\mathbb{Z} / k \mathbb{Z}$ be the cyclic group of order k, and let ζ be a $k^{t h}$ root of unity (not necessarily primitive). Then G has a 1-dimensional representation given by $\rho(x)=\zeta^{x}$.

Example 5. Let G act on a finite set X. Then there is an associated representation on \mathbb{F}^{X}, the vector space with basis X, given by

$$
\rho(g)\left(\sum_{x \in X} a_{x} x\right)=\sum_{x \in X} a_{x}(g \cdot x)
$$

For instance, the action of G on itself by left multiplication gives rise in this way to the regular representation.

Example 6. Let $G=D_{n}$, the dihedral group of order $2 n$, i.e., the group of symmetries of a regular n-gon, given in terms of generators and relations by

$$
\left\langle s, r: s^{2}=r^{n}=1, s r s=r^{-1}\right\rangle
$$

There are a bunch of associated faithful representations of G.
First, we can regard s as a reflection and r as a rotation:

$$
\rho(s)=\left[\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right], \quad \rho(r)=\left[\begin{array}{cc}
\cos \theta & \sin \theta \\
-\sin \theta & \cos \theta
\end{array}\right]
$$

(where $\theta=2 \pi / n)$. This is a faithful 2-dimensional representation.
Alternately, we can consider the actions of G on vertices, or on edges, or on opposite pairs, or on diameters. These are all faithful n-dimensional representations, except for the last - if n is even, then this representation is $2 n$-dimensional and not faithful.

Example 7. The symmetric group \mathfrak{S}_{n} has a nontrivial 1-dimensional representation, the sign representation, given by

$$
\rho_{\mathrm{sign}}(\sigma)= \begin{cases}1 & \text { if } \sigma \text { is even } \\ -1 & \text { if } \sigma \text { is odd }\end{cases}
$$

Note that $\rho_{\text {sign }}(g)=\operatorname{det} \rho_{\text {def }}(g)$, where $\rho_{\text {def }}$ is the defining representation of \mathfrak{S}_{n}. In general, if ρ is any representation, then $\operatorname{det} \rho$ is a 1 -dimensional representation. Note that

For you algebraists, a representation of G is the same thing as a left module over the group algebra $\mathbb{F} G$.
Example 8. Let (ρ, V) and $\left(\rho^{\prime}, V^{\prime}\right)$ be representations of G, where $V \cong \mathbb{F}^{n}, V^{\prime} \cong \mathbb{F}^{m}$. The direct sum $\rho \oplus \rho^{\prime}: G \rightarrow G L\left(V \oplus V^{\prime}\right)$ is defined by

$$
\left(\rho \oplus \rho^{\prime}\right)(g)\left(v+v^{\prime}\right)=\rho(g)(v)+\rho^{\prime}(g)\left(v^{\prime}\right)
$$

for $v \in V, v^{\prime} \in V^{\prime}$. In terms of matrices, $\left(\rho \oplus \rho^{\prime}\right)(g)$ is a block-diagonal matrix

$$
\left[\begin{array}{c|c}
\rho(g) & 0 \\
\hline 0 & \rho^{\prime}(g)
\end{array}\right]
$$

Isomorphisms and Homomorphisms

When two representations are the same? More generally, what is a map between representations?
Definition 2. Let (ρ, V) and $\left(\rho^{\prime}, V^{\prime}\right)$ be representations of G. A linear transformation $\phi: V \rightarrow V^{\prime}$ is G-equivariant if $g \phi=\phi g$.

Equivalently, $g \cdot \phi(v)=\phi(g \cdot v)$ for all $g \in G, v \in V$. [Or, more precisely if less concisely: $\rho^{\prime}(g) \cdot \phi(v)=$ $\phi(\rho(g) \cdot v)$.

If you insist, this is equivalent to the condition that the following diagram commutes for all $g \in G$:

Abusing notation as usual, we might write $\phi: \rho \rightarrow \rho^{\prime}$.
In the language of modules, these are just G-module homomorphisms. Accordingly, the vector space of all G-equivariant maps $V \rightarrow V^{\prime}$ is denoted $\operatorname{Hom}_{G}\left(V, V^{\prime}\right)$. This is itself a representation of G.

Example 9. One way in which G-equivariant transformations occur is when an action "naturally" induces another action. For instance, consider the permutation action of \mathfrak{S}_{4} on the vertices of K_{4}, which induces a 4-dimensional representation ρ_{v}. However, this action naturally determines an action on the six edges of K_{4}, which in turn induces a 6 -dimensional representation ρ_{e}. This is to say that there is a G-equivariant transformation $\rho_{v} \rightarrow \rho_{e}$.
Definition 3. Two representations (ρ, V) and $\left(\rho^{\prime}, V^{\prime}\right)$ of G are isomorphic if there is a G-equivariant map $\phi: V \rightarrow V^{\prime}$ that is a vector space isomorphism.

Example 10. Let \mathbb{F} be a field of characteristic $\neq 2$, and let $V=\mathbb{F}^{2}$, with standard basis $\left\{e_{1}, e_{2}\right\}$. Let $G=\mathfrak{S}_{2}=\{12,21\}$. The defining representation $\rho=\rho_{\text {def }}$ of G on V is given by

$$
\rho(12)=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right], \quad \rho(21)=\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right]
$$

On the other hand, the representation $\sigma=\rho_{\text {triv }} \oplus \rho_{\text {sign }}$ is given on V by

$$
\sigma(12)=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right], \quad \sigma(21)=\left[\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right]
$$

These two representations are in fact isomorphic. Indeed, ρ acts trivially on span $\left\{e_{1}+e_{2}\right\}$ and acts by -1 on $\operatorname{span}\left\{e_{1}-e_{2}\right\}$. Since these two vectors form a basis of V, one can check that

$$
\phi=\left[\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right]^{-1}=\left[\begin{array}{cc}
\frac{1}{2} & \frac{1}{2} \\
\frac{1}{2} & -\frac{1}{2}
\end{array}\right]
$$

is an isomorphism $\rho \rightarrow \sigma$.

Our goal is to classify representations up to isomorphism. As we will see, we can do this without having to worry about every coordinate of every matrix $\rho(g)$ - all we really need to know is the trace of $\rho(g)$, known as the character of a representation. For instance, in this last example, we can detect the isomorphism $\rho \cong \sigma$ by observing that

$$
\operatorname{tr}(\rho(12))=\operatorname{tr}(\sigma(12))=2, \quad \operatorname{tr}(\rho(21))=\operatorname{tr}(\sigma(21))=0
$$

