
Monday 4/7

Group Representations

Definition 1. Let G be a group and let V ∼= F
n be a finite-dimensional vector space over a field F. A

representation of G on V is a group homomorphism ρ : G → GL(V ). That is, for each g ∈ G there is an
invertible n × n matrix ρ(g), satisfying

ρ(g)ρ(h) = ρ(gh) ∀g, h ∈ G.

(That’s matrix multiplication on the left side of the equation, and group multiplication in G on the right.)
The number n is called the dimension (or degree) of the representation.

• ρ specifies an action of G on V that respects its vector space structure.
• We often abuse terminology by saying that ρ is a representation, or that V is a representation, or

that the pair (ρ, V ) is a representation.
• ρ is a permutation representation if ρ(g) is a permutation matrix for all g ∈ G.
• ρ is faithful if it is injective as a group homomorphism.

Example 1 (The regular representation). Let G be a finite group with n elements, and let FG be the vector
space of formal F-linear combinations of elements of G: that is,

FG =

{

∑

h∈G

ahh | ah ∈ F

}

.

Then there is a representation ρreg of G on FG, called the regular representation, defined by

g

(

∑

h∈G

ahh

)

=
∑

h∈G

ah(gh).

That is, g permutes the standard basis vectors of FG according to the group multiplication law.

Example 2 (The defining representation of Sn). Let G = Sn, the symmetric group on n elements. Then
we can represent each permutation σ ∈ G by the permutation matrix with 1’s in the positions (i, σ(i)) for
every i ∈ [n], and 0’s elsewhere. For instance, the permutation 4716253 ∈ S7 corresponds to the permutation
matrix
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0 0 0 1 0 0 0
0 0 0 0 0 0 1
1 0 0 0 0 0 0
0 0 0 0 0 1 0
0 1 0 0 0 0 0
0 0 0 0 1 0 0
0 0 1 0 0 0 0
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Example 3. For any group G, the trivial representation is defined by ρtriv(g) = In (the n × n identity
matrix).

Example 4. Let G = Z/kZ be the cyclic group of order k, and let ζ be a kth root of unity (not necessarily
primitive). Then G has a 1-dimensional representation given by ρ(x) = ζx.

Example 5. Let G act on a finite set X . Then there is an associated representation on F
X , the vector

space with basis X , given by

ρ(g)

(

∑

x∈X

axx

)

=
∑

x∈X

ax(g · x).

For instance, the action of G on itself by left multiplication gives rise in this way to the regular representation.



Example 6. Let G = Dn, the dihedral group of order 2n, i.e., the group of symmetries of a regular n-gon,
given in terms of generators and relations by

〈s, r : s2 = rn = 1, srs = r−1〉.

There are a bunch of associated faithful representations of G.

First, we can regard s as a reflection and r as a rotation:

ρ(s) =

[

1 0
0 −1

]

, ρ(r) =

[

cos θ sin θ
− sin θ cos θ

]

(where θ = 2π/n). This is a faithful 2-dimensional representation.

Alternately, we can consider the actions of G on vertices, or on edges, or on opposite pairs, or on diameters.
These are all faithful n-dimensional representations, except for the last — if n is even, then this representation
is 2n-dimensional and not faithful.

Example 7. The symmetric group Sn has a nontrivial 1-dimensional representation, the sign represen-

tation, given by

ρsign(σ) =

{

1 if σ is even,

−1 if σ is odd.

Note that ρsign(g) = det ρdef(g), where ρdef is the defining representation of Sn. In general, if ρ is any
representation, then det ρ is a 1-dimensional representation. Note that

For you algebraists, a representation of G is the same thing as a left module over the group algebra FG.

Example 8. Let (ρ, V ) and (ρ′, V ′) be representations of G, where V ∼= F
n, V ′ ∼= F

m. The direct sum

ρ ⊕ ρ′ : G → GL(V ⊕ V ′) is defined by

(ρ ⊕ ρ′)(g)(v + v′) = ρ(g)(v) + ρ′(g)(v′)

for v ∈ V , v′ ∈ V ′. In terms of matrices, (ρ ⊕ ρ′)(g) is a block-diagonal matrix
[

ρ(g) 0
0 ρ′(g)

]

.



Isomorphisms and Homomorphisms

When two representations are the same? More generally, what is a map between representations?

Definition 2. Let (ρ, V ) and (ρ′, V ′) be representations of G. A linear transformation φ : V → V ′ is
G-equivariant if gφ = φg.

Equivalently, g · φ(v) = φ(g · v) for all g ∈ G, v ∈ V . [Or, more precisely if less concisely: ρ′(g) · φ(v) =
φ(ρ(g) · v).]

If you insist, this is equivalent to the condition that the following diagram commutes for all g ∈ G:

V
φ

−−−−→ V ′

ρ(g)





y





y
ρ′(g)

V −−−−→
φ

V ′

Abusing notation as usual, we might write φ : ρ → ρ′.

In the language of modules, these are just G-module homomorphisms. Accordingly, the vector space of all
G-equivariant maps V → V ′ is denoted HomG(V, V ′). This is itself a representation of G.

Example 9. One way in which G-equivariant transformations occur is when an action “naturally” induces
another action. For instance, consider the permutation action of S4 on the vertices of K4, which induces
a 4-dimensional representation ρv. However, this action naturally determines an action on the six edges of
K4, which in turn induces a 6-dimensional representation ρe. This is to say that there is a G-equivariant
transformation ρv → ρe.

Definition 3. Two representations (ρ, V ) and (ρ′, V ′) of G are isomorphic if there is a G-equivariant map
φ : V → V ′ that is a vector space isomorphism.

Example 10. Let F be a field of characteristic 6= 2, and let V = F
2, with standard basis {e1, e2}. Let

G = S2 = {12, 21}. The defining representation ρ = ρdef of G on V is given by

ρ(12) =

[

1 0
0 1

]

, ρ(21) =

[

0 1
1 0

]

.

On the other hand, the representation σ = ρtriv ⊕ ρsign is given on V by

σ(12) =

[

1 0
0 1

]

, σ(21) =

[

1 0
0 −1

]

.

These two representations are in fact isomorphic. Indeed, ρ acts trivially on span{e1 + e2} and acts by −1
on span{e1 − e2}. Since these two vectors form a basis of V , one can check that

φ =

[

1 1
1 −1

]−1

=

[

1
2

1
2

1
2 − 1

2

]

is an isomorphism ρ → σ.

Our goal is to classify representations up to isomorphism. As we will see, we can do this without having to
worry about every coordinate of every matrix ρ(g) — all we really need to know is the trace of ρ(g), known
as the character of a representation. For instance, in this last example, we can detect the isomorphism
ρ ∼= σ by observing that

tr (ρ(12)) = tr (σ(12)) = 2, tr (ρ(21)) = tr (σ(21)) = 0.


