Wednesday 4/2

Dilworth's Theorem and Graph Theory

A chain cover of a poset P is a collection^{*} of chains whose union is P.

Theorem 1 (Dilworth's Theorem). In any finite poset, the minimum size of a chain cover equals the maximum size of an antichain.

If we switch "chain" and "antichain", the result remains true and becomes (nearly) trivial:

Proposition 2 (Trivial Proposition). In any finite poset, the minimum size of an antichain cover equals the maximum size of an chain.

This is much easier to prove than Dilworth's Theorem.

Proof. For the \geq direction, if C is a chain and \mathcal{A} is an antichain cover, then no antichain in \mathcal{A} can contain more than one element of C, so $|\mathcal{A}| \geq |C|$. On the other hand, let

 $A_i = \{x \in P \mid \text{ the longest chain headed by } x \text{ has length } i\};$

then $\{A_i\}$ is an antichain cover who we cardinality equals the length of the longest chain in P.

These theorems have graph-theoretic consequences.

The chromatic number $\chi(G)$ of a graph G is the smallest number k such that G has a proper k-coloring. The clique number $\omega(G)$ is the largest size of a clique in G (a set of pairwise adjacent vertices). Since each vertex in a clique must be assigned a different color, it follows that

(1)
$$\chi(G) \ge \omega(G).$$

always; however, equality need not hold (for instance, for a cycle of odd length). The graph G is called **perfect** if $\omega(H) = \chi(H)$ for every induced subgraph $H \subseteq G$.

Definition 1. Let P be a finite poset. Its *comparability graph* G_P to be the graph G with vertices P and edges

$$\{xy \mid x \le y \text{ or } x \ge y\}.$$

 $^{^{*}\}mbox{It}$ doesn't matter whether or not we require the chains to be pairwise disjoint.

Equivalently, G_P is the underlying undirected graph of the transitive closure of the Hasse diagram of P. The *incomparability graph* $\overline{G_P}$ is the complement of G_P ; that is, x, y are adjacent if and only if they are incomparable.

For example, if P is the poset whose Hasse diagram is shown on the left, then G_P is P plus the edges

A chain in P corresponds to a clique in G_P and to a coclique in $\overline{G_P}$. Likewise, an antichain in P corresponds to a coclique in G_P and to a clique in $\overline{G_P}$.

Observe that a covering of the vertex set of a graph by cocliques is exactly the same thing as a proper coloring. Therefore, the Trivial Proposition and Dilworth's Theorem say respectively that

Theorem 3. Comparability and incomparability graphs of posets are perfect.

Theorem 4 (Perfect Graph Theorem; Lovász 1972). Let G be a finite graph. Then G is perfect if and only if \overline{G} is perfect.

Theorem 5 (Strong Perfect Graph Theorem; Seymour/Chudnovsky 2002). Let G be a finite graph. Then G is perfect if and only if it has no "obvious bad counterexamples", i.e., induced subgraphs of the form C_r or \bar{C}_r , where $r \geq 5$ is odd.

The Greene-Kleitman Theorem

There is a wonderful generalization of Dilworth's theorem due to C. Greene and D. Kleitman (1976).

Theorem 6. Let P be a finite poset. Define two sequences of positive integers

$$\lambda = (\lambda_1, \lambda_2, \dots), \lambda_\ell), \qquad \mu = (\mu_1, \mu_2, \dots, \mu_m)$$

by

$$\lambda_1 + \dots + \lambda_k = \max \{ |C_1 \cup \dots \cup C_k| : C_i \subseteq P \text{ chains } \}, \\ \mu_1 + \dots + \mu_k = \max \{ |A_1 \cup \dots \cup A_k| : A_i \subseteq P \text{ disjoint antichains } \}.$$

Then:

- (1) λ and μ are both partitions of |P|, i.e., weakly decreasing sequences whose sum is |P|.
- (2) λ and μ are conjugates, *i.e.*,

$$\mu_i = \#\{j \mid \lambda_j \ge i\}.$$

For example, consider the following poset:

Then $\lambda = (3, 2, 2, 2)$ and $\mu = (4, 4, 1)$:

Dilworth's Theorem is now just the special case $\mu_1 = \ell$.