
Wednesday 4/2

Dilworth’s Theorem and Graph Theory

A chain cover of a poset P is a collection∗ of chains whose union is P .

Theorem 1 (Dilworth’s Theorem). In any finite poset, the minimum size of

a chain cover equals the maximum size of an antichain.

If we switch “chain” and “antichain”, the result remains true and becomes
(nearly) trivial:

Proposition 2 (Trivial Proposition). In any finite poset, the minimum size

of an antichain cover equals the maximum size of an chain.

This is much easier to prove than Dilworth’s Theorem.

Proof. For the ≥ direction, if C is a chain and A is an antichain cover, then
no antichain in A can contain more than one element of C, so |A| ≥ |C|. On
the other hand, let

Ai = {x ∈ P | the longest chain headed by x has length i};

then {Ai} is an antichain cover whowe cardinality equals the length of the
longest chain in P . �

These theorems have graph-theoretic consequences.

The chromatic number χ(G) of a graph G is the smallest number k such that
G has a proper k-coloring. The clique number ω(G) is the largest size of a
clique in G (a set of pairwise adjacent vertices). Since each vertex in a clique
must be assigned a different color, it follows that

(1) χ(G) ≥ ω(G).

always; however, equality need not hold (for instance, for a cycle of odd
length). The graph G is called perfect if ω(H) = χ(H) for every induced
subgraph H ⊆ G.

Definition 1. Let P be a finite poset. Its comparability graph GP to be the
graph G with vertices P and edges

{xy | x ≤ y or x ≥ y}.

∗It doesn’t matter whether or not we require the chains to be pairwise disjoint.



Equivalently, GP is the underlying undirected graph of the transitive closure
of the Hasse diagram of P . The incomparability graph GP is the complement
of GP ; that is, x, y are adjacent if and only if they are incomparable.

For example, if P is the poset whose Hasse diagram is shown on the left, then
GP is P plus the edges
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A chain in P corresponds to a clique in GP and to a coclique in GP . Likewise,
an antichain in P corresponds to a coclique in GP and to a clique in GP .

Observe that a covering of the vertex set of a graph by cocliques is exactly
the same thing as a proper coloring. Therefore, the Trivial Proposition and
Dilworth’s Theorem say respectively that

Theorem 3. Comparability and incomparability graphs of posets are perfect.

Theorem 4 (Perfect Graph Theorem; Lovász 1972). Let G be a finite graph.

Then G is perfect if and only if Ḡ is perfect.

Theorem 5 (Strong Perfect Graph Theorem; Seymour/Chudnovsky 2002).
Let G be a finite graph. Then G is perfect if and only if it has no “obvious

bad counterexamples”, i.e., induced subgraphs of the form Cr or C̄r, where

r ≥ 5 is odd.

The Greene-Kleitman Theorem

There is a wonderful generalization of Dilworth’s theorem due to C. Greene
and D. Kleitman (1976).

Theorem 6. Let P be a finite poset. Define two sequences of positive integers

λ = (λ1, λ2, . . . ), λℓ), µ = (µ1, µ2, . . . , µm)

by

λ1 + · · · + λk = max
{

|C1 ∪ · · · ∪ Ck| : Ci ⊆ P chains
}

,

µ1 + · · · + µk = max
{

|A1 ∪ · · · ∪ Ak| : Ai ⊆ P disjoint antichains
}

.

Then:



(1) λ and µ are both partitions of |P |, i.e., weakly decreasing sequences

whose sum is |P |.
(2) λ and µ are conjugates, i.e.,

µi = #{j | λj ≥ i}.

For example, consider the following poset:

Then λ = (3, 2, 2, 2) and µ = (4, 4, 1):

Dilworth’s Theorem is now just the special case µ1 = ℓ.


