Monday 3/31

Network Flows

Definition: A network is a directed graph N = (V, E) with the following additional data:

- A distinguished source $s \in V$ and sink $t \in V$.
- A capacity function $c: E \to \mathbb{N}$.

A flow on N is a function $f : E \to \mathbb{N}$ that satisfies the **capacity constraints** (1) $0 \le f(e) \le c(e) \quad \forall e \in E$

and the conservation constraints

$$f^-(v) = f^+(v) \qquad \forall v \in V \setminus \{s, t\}$$

where

(2)

$$f^{-}(v) = \sum_{e=\overline{uv}} f(e), \qquad f^{+}(v) = \sum_{e=\overline{vw}} f(e).$$

The **value** of a flow f is the net flow into the sink:

$$|f| = f^{-}(t) - f^{+}(t) = f^{+}(s) - f^{-}(s).$$

Let $S, T \subset V$ with $S \cup T = V$, $S \cap T = \emptyset$, $s \in S$, and $t \in T$. The corresponding **cut** is

$$[S,T] = \{ \overrightarrow{st} \in E \mid s \in S, t \in \overline{S} \}$$

and the **capacity** of the cut is

$$c(S,T) = \sum_{e \in E} c(e).$$

We proved the main result last time:

Theorem 1 (Max-Flow/Min-Cut Theorem). Let f be a flow of maximum value and let [S,T] be a cut of minimum capacity. Then |f| = c(S,T).

Acyclic and Partitionable Flows

Definition 1. A flow f is acyclic if, for every directed cycle $C \subset D$, i.e., every set of edges

$$C = \{ \overrightarrow{x_1 x_2}, \overrightarrow{x_2 x_3}, \dots, \overrightarrow{x_{n-1} x_n}, \overrightarrow{x_n x_1} \},\$$

there is some $e \in C$ for which f(e) = 0.

A flow f is partitionable if there is a collection of s, t-paths $P_1, \ldots, P_{|f|}$ from such that for every $e \in E$,

$$f(e) = \#\{i \mid e \in P_i\}.$$

(Here "s, t-path" means "path from s to t".)

Proposition 2. • For every flow, there exists an acyclic flow with the same value.

• Every acyclic flow is partitionable.

Proof. Suppose that some directed cycle C has positive flow on every edge. Let $k = \min\{f(e) \mid e \in C\}$. Define $\tilde{f}: E \to \mathbb{N}$ by

$$\tilde{f}(e) = \begin{cases} f(e) - k \text{ if } e \in C, \\ f(e) \text{ if } e \notin C. \end{cases}$$

Then it is easy to check that \tilde{f} is a flow, and that $|\tilde{f}| = |f|$. If we repeat this process, it must eventually stop (because the positive quantity $\sum_{e \in E} f(e)$ decreases with each iteration), which means that the resulting flow is acyclic. This proves (1).

Given an acyclic flow f, find an s, t-path P_1 along which all flow is positive. Decrement the flow on each edge of P_1 ; doing this will also decrement |f|. Now repeat this for an s, t-path P_2 , etc. Eventually, we partition f into a collection of s, t-paths of cardinality |f|.

Applications of the Max-Flow/Min-Cut Theorem

Let G be a graph or directed graph, and let $s, t \in V(G)$. A family of s, t-paths $\{P_1, \ldots, P_n\}$ in G is vertexdisjoint if $V(P_i) \cap V(P_j) = \{s, t\}$ for all i, j, and is edge-disjoint if $E(P_i) \cap E(P_j) = \emptyset$ for all i, j. Every vertex-disjoint family is edge-disjoint, but the converse is not true.

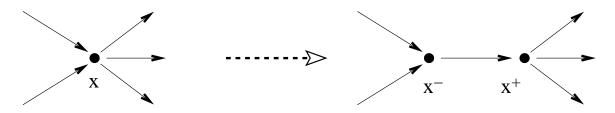
An s, t-vertex cut is a set $X \subseteq V(G)$ such that G - X contains no s, t-path. Likewise, an s, t-edge cut is a set $A \subseteq E$ such that G - A contains no s, t-path.

Theorem 3 (Menger's Theorem). Let G be a graph or directed graph and let $s, t \in V(G)$. Then the maximum cardinality of a vertex-disjoint (resp., edge-disjoint) family of s,t-paths equals the minimum cardinality of an s,t-vertex cut (resp., edge cut). (In the former case, we assume s,t are not adjacent.)

Proof. First of all, an undirected graph can be considered as a digraph by replacing each edge xy with a pair of antiparallel edges $\overrightarrow{xy}, \overrightarrow{yx}$. So we may as well consider only the directed setting.

If we regard G as a network with source s and sink t, in which every edge has capacity 1, then the edge-version of Menger's Theorem is immediate from the Max-Flow/Min-Cut Theorem and Proposition 2.

For the vertex version, we need to do a little surgery on G before applying Max-Flow/Min-Cut. The trick is to separate each vertex $x \in V(G) \setminus \{s, t\}$ into an "inbox" x^- and an "out-terminal" x^+ with a bottleneck between them, so that only one path can pass through each vertex.



Specifically, define a digraph N by

$$\begin{split} V(N) &= \{s,t\} \cup \{x^-, x^+ \mid x \in V(G) \setminus \{s,t\}, \\ E(N) &= \{\overrightarrow{sx^-} \mid \overrightarrow{sx} \in E(G)\} \cup \{\overrightarrow{x^+t} \mid \overrightarrow{xt} \in E(G)\} \\ &\cup \{\overrightarrow{x^+y^-} \mid \overrightarrow{xy} \in E(G)\} \\ &\cup \{\overrightarrow{x^-x^+} \mid x \in V(G)\}, \end{split}$$

and regard it as a network with source s and sink t and capacity function

$$c(e) = \begin{cases} 1 & \text{if } e = \overrightarrow{x^- x^+} \text{ for some } x \in V(G), \\ \infty & \text{otherwise.} \end{cases}$$

Then an s, t-cut in N contains only finite-capacity edges, hence corresponds to an s, t-vertex cut in G. Now applying Max-Flow/Min-Cut gives the desired result.

Back to Algebraic Combinatorics

Here is two related min-max results on posets with the same flavor as the Max-Flow/Min-Cut Theorem.

A chain cover of a poset P is a collection of chains whose union is P. The minimum size of a chain cover is called the width of P.

Theorem 4 (Dilworth's Theorem). Let P be a finite poset. Then

 $width(P) = \max\{s \mid P \text{ has an antichain of size } s\}.$

Dilworth's Theorem can be proven using Max-Flow/Min-Cut, but it involves a bit more work, so here is a poset-theoretic proof instead.

Proof. The " \geq " direction is clear, because if A is an antichain, then no chain can meet A more than once, so P cannot be covered by fewer than |A| chains.

For the more difficult " \leq " direction, we induct on n = |P|. The result is trivial if n = 1 or n = 2.

Let Y be the set of all minimal elements of P, and let Z be the set of all maximal elements. Note that Y and Z are both antichains. First, suppose that no set other than Y and Z is an antichain of maximum size. Dualizing if necessary, we may assume Y is maximum. Let $y \in Y$ and $z \in Z$ with $y \leq z$. Then the maximum size of an antichain in $P' = P - \{y, z\}$ is |Y| - 1, so by induction it can be covered with |Y| - 1 chains, and tossing in the chain $\{y, z\}$ gives a chain cover of P of size |Y|.

Now, suppose that A is an antichain of maximum size that contains neither Y nor Z as a subset. Define

 $P^{+} = \{ x \in P \mid x \ge a \text{ for some } a \in A \},\$ $P^{-} = \{ x \in P \mid x \le a \text{ for some } a \in A \}.$

Then

• P^+ , $P^- \neq \emptyset$ (otherwise A equals Z or Y).

- $P^+ \cup P^- = P$ (otherwise A is contained in some larger antichain).
- $P^+ \cap P^- = A$ (otherwise A isn't an antichain).

So P^+ and P^- are posets smaller than P, each of which has A as a maximum antichain. By induction, each has a chain cover of size |A|. So for each $a \in A$, there is a chain $C_a^+ \subset P^+$ and a chain $C_a^- \subset P^-$ with $a \in C_a^+ \cap C_a^-$, and

$$\left\{C_a^+ \cap C_a^- \mid a \in A\right\}$$

is a chain cover of P of size |A|.