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Oriented Matroids

Last time:

Let A = {H1, . . . , Hn} be a hyperplane arrangement in R
d.

Let ℓ1, . . . , ℓn be affine linear forms such that Hi = {~x ∈ R
d | ℓi(~x) = 0} for all i.

For c = (c1, . . . , cn) ∈ {+,−, 0}n, let

F =







~x ∈ R
d |

ℓi(~x) > 0 if ci = +
ℓi(~x) < 0 if ci = −
ℓi(~x) = 0 if ci = 0







If F 6= ∅ then it is called a face of A, and c = c(F ) is the corresponding covector.

F (A) = {faces of A}

F̂ (A) = F (A) ∪ {0̂, 1̂} = big face lattice of A

(ordered by F ≤ F ′ if F̄ ⊆ F̄ ′).

Consider the linear forms ℓi that were used in representing each face by a covector. Specifying ℓi is equivalent
to specifying a normal vector ~vi to the hyperplane Hi (with ℓi(~x) = ~vi ·x. As we know, the vectors ~vi represent
a matroid whose lattice of flats is precisely L(A).

Scaling ~vi (equivalently, ℓi) by a nonzero constant λ ∈ R has no effect on the matroid represented by the
~vi’s, but what does it do to the covectors? If λ > 0, then nothing happens, but if λ < 0, then we have to
switch + and − signs in the ith position of every covector. So, in order to figure out the covectors, we need
not just the normal vectors ~vi, but an orientation for each one.

Example: Let’s go back to the two arrangements considered at the start. Their regions are labeled by the
following covectors:
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Now, you should object that the oriented normal vectors are the same in each case. Yes, but this couldn’t
happen if the arrangements were central, because two vector subspaces of the same space cannot possibly be
parallel. In fact, if A is a central arrangement, then the oriented normals determine F (A) uniquely.

Proposition: The covectors of A are preserved under the operation of negation (changing all +’s to −’s
and vice versa) if and only if A is central. In fact, the maximal covectors that can be negated are exactly
those that correspond to bounded regions.

Example 1. Consider the central arrangement A whose hyperplanes are the zero sets of the linear forms

ℓ1 = x + y, ℓ2 = x − y, ℓ3 = x − z, ℓ1 = y + z.

The corresponding normal vectors are V = {~v1, . . . , ~v4}, where

~v1 = (1,−1, 0), ~v2 = (1, 1, 0), ~v3 = (1, 0, 1), ~v4 = (0, 1,−1).

The projectivization proj(A) looks like this:
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Each region F that borders the equator has a polar opposite −F such that c(−F ) = −c(F ).

The regions with covectors −−−+ and −+−+ do not border the equator, i.e., they are bounded in proj(A).
Since they do not border the equator, neither do their opposites in A, so those opposites do not occur in
proj(A).

In the figure of Example 1, consider the point p = ℓ2 ∩ ℓ3 ∩ ℓ4. That three lines intersect at p means that
there is a linear dependence among the corresponding normal vectors.

~v2 − ~v3 + ~v4 = 0,

or on the level of linear forms,

(1) ℓ2 − ℓ3 + ℓ4 = 0.

Of course, knowing which subsets of V are linearly dependent is equivalent to knowing the matroid M

represented by V . Indeed, {~v2, ~v3, ~v4} is a circuit of M .

However, (1) tells us more than that: there exists no ~x ∈ R
3 such that

ℓ2(x) > 0, ℓ3(x) < 0, and ℓ4(x) > 0.



That is, A has no covector of the form ∗+−+ (for any ∗ ∈ {+,−, 0}). We say that 0+−+ is the corresponding
oriented circuit.

For c ∈ {+,−, 0}n, write
c+ = {i | ci = +}, c− = {i | ci = −}.

Definition: Let n be a positive integer. A circuit system for an oriented matroid is a collection C of
n-tuples c ∈ {+,−, 0}n satisfying the following properties:

(1) 00 · · ·0 6∈ C .
(2) If c ∈ C , then −c ∈ C .
(3) If c, c′ ∈ C and c 6= c′, then it is not the case that both c+ ⊂ c′+ and c− ⊂ c′

−

(4) If c, c′ ∈ C and c 6= c′, and there is some i with ci = + and c′i = −, then there exists d ∈ C with
di = 0, and, for all j 6= i, d+ ⊂ c+ ∪ c′+ and d− ⊂ c− ∪ c′

−
.

Again, the idea is to record not just the linearly dependent subsets of a set {ℓi, . . . , ℓn} of linear forms, but
also the sign patterns of the corresponding linear dependences, or “syzygies”.

Condition (1) says that the empty set is linearly independent.

Condition (2) says that multiplying any syzygy by −1 gives a syzygy.

Condition (3), as in the definition of the circuit system of an (unoriented) matroid, must hold if we want
circuits to record syzygies with minimal support.

Condition (4) is the oriented version of circuit exchange. Suppose that we have two syzygies
n

∑

j=1

γjℓj =

n
∑

j=1

γ′

jℓj = 0,

with γi > 0 and γ′

i < 0 for some i. Multiplying by positive scalars if necessary (hence not changing the sign
patterns), we may assume that γi = −γ′

i. Then
n

∑

j=1

δjℓj = 0,

where δj = γj + γ′

j . In particular, δi = 0, and δj is positive (resp., negative) if and only if at least one of

γj , γ
′

j is positive (resp., negative).

• The set
{c+ ∪ c− | c ∈ C }

forms a circuit system for an (ordinary) matroid.

• Just as every graph gives rise to a matroid, any loopless directed graph gives rise to an oriented matroid
(homework problem!)

As in the unoriented setting, the circuits of an oriented matroid represent minimal obstructions to being
a covector. That is, for every real hyperplane arrangement A, we can construct a circuit system C for an
oriented matroid such that if k is a covector of A and c is a circuit, then it is not the case that k+ ⊇ c+ and
K− ⊇ c−.

More generally, we can construct an oriented matroid from any real pseudosphere arrangement, i.e., a col-
lection of homotopy d − 1-spheres embedded in R

n such that the intersection of the closures of the spheres
in any subcollection is connected or empty. Here is an example of a pseudocircle arrangement in R

2:



In fact, the Topological Representation Theorem of Folkman and Lawrence (1978) says that every oriented
matroid can be realized by such a pseudosphere arrangement. However, there exist (lots of!) oriented
matroids that cannot be realized as hyperplane arrangements.

Example: Pappus’ Theorem from Euclidean geometry says the following:

Let a, b, c, a′, b′, c′ be distinct points in R
2 such that a, b, c and a′, b′, c′ are collinear. Then the three points

x = ab′ ∩ a′b,

y = ac′ ∩ a′c,

z = bc′ ∩ b′c

are collinear.
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• If we perturb the green line a little bit so that it meets x and y but not z, we obtain a pseudoline
arrangement whose oriented matroid M cannot be realized by means of a line arrangement.
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• Pappus’ Theorem can be proven using analytic geometry. The equations that say that x, y, z are collinear
work over any field. Therefore, “unorienting” M produces a matroid that is not representable over any field.


