Monday 3/24

The Big Face Lattice

Let $\mathcal{A}, \mathcal{A}^{\prime}$ be the following two affine line arrangements in \mathbb{R}^{2}. Are they isomorphic?

They have the same intersection poset (and therefore the same characteristic polynomial, which happens to be $k^{2}-5 k+6$) but non-isomorphic dual graphs-only the dual graph of \mathcal{A}^{\prime} has a vertex of degree 4 .

Therefore, we'd like to have some notion of "isomorphism" of real hyperplane arrangements that distinguishes between these two.

Definition 1. Let $\mathcal{A}=\left\{H_{1}, \ldots, H_{n}\right\} \subset \mathbb{R}^{d}$ be a hyperplane arrangement, and let $\ell_{1}, \ldots, \ell_{n}$ be linear forms such that $H_{i}=\left\{\vec{x} \in \mathbb{R}^{d} \mid \ell_{i}(\vec{x})=0\right\}$. Let $c=\left(c_{1}, \ldots, c_{n}\right)$, where $c_{i} \in\{+,-, 0\}$ for each i. Consider the system of equations and inequalities

$$
\begin{cases}\ell_{i}(\vec{x})>0 & \text { if } c_{i}=+ \\ \ell_{i}(\vec{x})<0 & \text { if } c_{i}=- \\ \ell_{i}(\vec{x})=0 & \text { if } c_{i}=0\end{cases}
$$

If the solution set of this system is nonempty, it is called a face of \mathcal{A}, and c is called a covector. The set of all faces is denoted $\mathscr{F}(\mathcal{A})$.

Example: Let $\mathcal{A}=\mathscr{B}_{2}$. Let H_{1} and H_{2} be the x - and y-axes respectively, so that we may take $\ell_{i}(x, y)=y$ and $\ell_{2}(x, y)=x$. The members of $\mathscr{F}(\mathcal{A})$ are as follows:

Name	Set	Covector
Origin	$\{(0,0)\}$	00
Positive x-axis	$\{(x, 0) \mid x>0\}$	+0
Negative x-axis	$\{(x, 0) \mid x<0\}$	-0
Positive y-axis	$\{(0, y) \mid y>0\}$	$0+$
Negative y-axis	$\{(0, y) \mid y<0\}$	$0-$
1st quadrant	$\{(x, y) \mid x>0, y>0\}$	++
2nd quadrant	$\{(x, y) \mid x<0, y>0\}$	-+
3rd quadrant	$\{(x, y) \mid x<0, y<0\}$	--
4th quadrant	$\{(x, y) \mid x>0, y<0\}$	+-

The set $\mathscr{F}(\mathcal{A})$ has a natural partial ordering, given by $F \leq F^{\prime}$ whenever $\bar{F} \subseteq \bar{F}^{\prime}$, where the bar denotes closure in the usual topology on \mathbb{R}^{d}. Equivalently, if c, c^{\prime} are the covectors of F, F^{\prime} respectively, then $c_{i} \in\left\{c_{i}^{\prime}, 0\right\}$ for every i.
Proposition 1. The partially ordered set $\hat{\mathscr{F}}(\mathcal{A})=\mathscr{F}(\mathcal{A}) \cup\{\hat{0}, \hat{1}\}$ is a ranked lattice, called the big face lattice of \mathcal{A}. (Note: The adjective "big" modifies "lattice", not "face".)

For example, the Hasse diagram of $\hat{\mathscr{F}}\left(\mathcal{B}_{2}\right)$ is shown on the left of the figure below. Since the Hasse diagram can be quite messy, it is typically more useful to draw a picture of \mathcal{A} in which each face is labeled by its covector, as on the right.

If F is a face of \mathcal{A} with covector c, then the affine span of F of \mathcal{A} is an intersection of hyperplanes in \mathcal{A}, namely those for which $c_{i}=0$. Therefore, we can recover the intersection poset $L(\mathcal{A})$ from $\mathscr{F}(\mathcal{A})$.

The coatoms of $\hat{\mathscr{F}}(\mathcal{A})$ are the regions of $\mathbb{R}^{d} \backslash \mathcal{A}$. The corresponding maximal covectors consist entirely of +'s and -'s, with no 0's. We can recover the dual graph of \mathcal{A} from $\mathscr{F}(\mathcal{A})$, because two maximal covectors represent adjacent regions if and only if they differ in exactly one digit.

