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Modular Elements

Let L be a lattice. Recall that L is modular if it is ranked, and its rank function r satisfies

(1) r(x) + r(y) = r(x ∨ y) + r(x ∧ y)

for every x, y ∈ L. (This is not how we first defined modular lattices, but we proved that it is an equivalent
condition; see notes from 1/30 and 2/1.)

Definition 1. An element x ∈ L is a modular element if (1) holds for every y ∈ L. Thus L is modular if
and only if every element of L is modular.

• The elements 0̂ and 1̂ are clearly modular in any lattice.

• If L is geometric, then every atom x is modular. Indeed, for y ∈ L, if y ≥ x, then y = x∨y and x = x∧y,
while if y 6≥ x then y ∧ x = 0̂ and y ∨ x m y.

• The coatoms of a geometric lattice, however, need not be modular. Let L = Πn; recall that Πn has rank
function r(π) = n − |π|. Let x = 12|34, y = 13|24 ∈ Π4. Then r(x) = r(y) = 2, but r(x ∨ y) = r(1̂) = 3 and

r(x ∧ y) = r(0̂) = 0. So x is not a modular element.

Proposition 1. The modular elements of Πn are exactly the partitions with at most one nonsingleton block.

Proof. Suppose that π ∈ Πn has one nonsingleton block B. For σ ∈ Πn, let

X = {C ∈ σ | C ∩ B 6= ∅}, Y = {C ∈ σ | C ∩ B = ∅}.

Then

π ∧ σ =
{

C ∩ B | C ∈ X
}

∪
{

{i} | i 6∈ B
}

,

π ∨ σ =

{

⋃

C∈X

C

}

∪ Y

so

|π ∧ σ| + |π ∨ σ| = (|X | + n − |B|) + (1 + |Y |)

= (n − |B| + 1) + (|X | + |Y |) = |π| + |σ|,

proving that π is a modular element.

For the converse, let B, C be nonsingleton blocks of π, then let σ have the two nonsingleton blocks
{i, k}, {j, `}, where i, j ∈ B and k, ` ∈ C. Then r(σ) = 2 and r(π ∧ σ) = r(0̂) = 0, but

r(π ∨ σ) = r(π) + 1 < r(π) + r(σ) − r(π ∧ σ)

so π is not a modular element. �

The usefulness of a modular element is that if one exists, we can factor the characteristic polynomial of L.

Theorem 2. Let L be a geometric lattice of rank n, and let z ∈ L be a modular element. Then

(2) χL(k) = χ[0̂,z](k) ·





∑

y: y∧z=0̂

µL(0̂, y)kn−r(z)−r(y)



 .

I’ll skip the proof, which uses calculation in the Möbius algebra; see Stanley, HA, pp. 50–52.



Corollary 3. Let L be a geometric lattice, and let a ∈ L be an atom. Then

χL(k) = (k − 1)
∑

x: x6≥a

µL(0̂, x)kr(L)−1−r(x).

(We already knew that k − 1 had to be a factor of χL(k), because χL(1) =
∑

x∈L µL(0̂, x) = 0. Still, it’s
nice to see it another way.)

Corollary 4. Let L be a geometric lattice, and let z ∈ L be a coatom that is a modular element. Then

χL(k) = (k − e)χ[0̂,z](k),

where e is the number of atoms a ∈ L such that a 6≤ z.

Example 1. Corollary 4 provides another way of calculating the characteristic polynomial of Πn. Let z be
the coatom with blocks [n−1] and {n}, which is a modular element by Proposition 1. There are n−1 atoms
a 6≤ z, namely the partitions whose nonsingleton block is {i, n} for some i ∈ [n − 1], so we obtain

χΠn
(k) = (k − n + 1)χΠn−1

(k)

and by induction
χΠn

(k) = (k − 1)(k − 2) · · · (k − n + 1).

Supersolvable Lattices

Let L be a geometric lattice with atoms A. Recall from (2) that if z is a modular element of L, then the
characteristic polynomial of L factors:

χL(k) = χ[0̂,z](k) ·





∑

y: y∧z=0̂

µL(0̂, y)kn−r(z)−r(y)



 .

Of course, we can always apply this for an atom z (Corollary 3). But, as we’ve seen with Πn, something
even better happens if z is a coatom: we can express χL(k) as the product of a linear form (the bracketed

sum) with the characteristic polynomial of a smaller geometric lattice, namely [0̂, z].

If we are extremely lucky, L will have a maximal chain of modular elements

0̂ = x0 l x1 l · · · l xn−1 l xn = 1̂.

In this case, we can apply Corollary 4 successively with z = xn−1, z = xn−2, . . . , z = x1 to split the
characteristic polynomial completely into linear factors:

χL(k) = (k − en−1)χ[0̂,xn−1]
(k)

= (k − en−1)(k − en−2)χ[0̂,xn−2]
(k)

= . . .

= (k − en−1)(k − en−2) · · · (k − e0),

where

ei = #{atoms a of [0̂, xi+1] | a 6≤ xi}

= #{a ∈ A | a ≤ xi+1, a 6≤ xi}.

Definition 2. A geometric lattice L is supersolvable if it has a modular maximal chain, that is, a maximal
chain 0̂ = x0 lx1 l · · ·lxn = 1̂ such that every xi is a modular element. A central hyperplane arrangement
A is called supersolvable if L(A) is supersolvable.

• Any modular lattice is supersolvable, because every maximal chain is modular.
• Πn is supersolvable. because we can take xi to be the partition whose unique nonsingleton block is

[i + 1]. Thus the braid arrangement Brn is supersolvable.



• Let G = C4 (a cycle with four vertices and four edges), and let A = AG. Then L(A) is the lattice
of flats of the matroid U3(4); i.e.,

L = {F ⊆ [4] : |F | 6= 3}

with r(F ) = min(|F |, 3). This lattice is not supersolvable, because no element at rank 2 is modular.
For example, let x = 12 and y = 34; then r(x) = r(y) = 2 but r(x ∨ y) = 3 and r(x ∧ y) = 0.

Theorem 5. Let G = (V, E) be a simple graph. Then AG is supersolvable if and only if the vertices of G

can be ordered v1, . . . , vn such that for every i > 1, the set

Ci := {vj | j ≤ i, vivj ∈ E}

forms a clique in G.

I’ll omit the proof, which is not too hard; see Stanley, pp. 55–57. An equivalent condition is that G is a
chordal graph: if C ⊆ G is a cycle of length ≥ 4, then some pair of vertices that are not adjacent in C are
in fact adjacent in G.

By the way, it is easy to see that if G satisfies the condition of Theorem 5, then the chromatic polynomial
χ(G; k) splits into linear factors. Consider what happens when we color the vertices in order. When we color
vertex vi, it has |Ci| neighbors that have already been colored, and they all have received different colors
because they form a clique. Therefore, there are k − |Ci| possible colors available for vi, and we see that

χ(G; k) =

n
∏

i=1

(k − |Ci|).


