Wednesday 3/12

Modular Elements

Let L be a lattice. Recall that L is modular if it is ranked, and its rank function r satisfies

(1) r(z) +r(y) =r(@Vy) +r(zAy)
for every z,y € L. (This is not how we first defined modular lattices, but we proved that it is an equivalent
condition; see notes from 1/30 and 2/1.)

Definition 1. An element z € L is a modular element if ([ll) holds for every y € L. Thus L is modular if
and only if every element of L is modular.

e The elements 0 and 1 are clearly modular in any lattice.

o If L is geometric, then every atom z is modular. Indeed, for y € L, if y > x, then y = zVy and x = x Ay,
while if y 2 x theny Az =0 and y vV > y.

e The coatoms of a geometric lattice, however, need not be modular. Let L = II,,; recall that II,, has rank

function r(7) =n — |r|. Let x = 12|34, y = 13|24 € TI4. Then r(z) = r(y) =2, but r(x Vy) =r(1) = 3 and

r(z Ay) =r(0) =0. So z is not a modular element.

Proposition 1. The modular elements of I1,, are exactly the partitions with at most one nonsingleton block.

Proof. Suppose that 7 € II,, has one nonsingleton block B. For ¢ € I1,,, let
X ={Ceo|CnNB+#}, Y={Ceo|CnNnB=70}.

Then
wAa:{OﬂB|C€X}U{{i}|i¢B},
7r\/0:{ U C}UY
CceX
SO

[mAo|+|nVvel = (| X|+n—|B))+ (1 +]Y])
(n—[B|+1)+(X|+[Y]) = |7]+]a],

proving that 7 is a modular element.

For the converse, let B,C be nonsingleton blocks of 7, then let o haye the two nonsingleton blocks
{i,k},{4,¢}, where i,j € B and k,£ € C. Then r(o) =2 and r(r A o) = r(0) =0, but

r(rVo)=r(r)+1<r(r)+r(c)—r(rAo)

so 7 is not a modular element. O

The usefulness of a modular element is that if one exists, we can factor the characteristic polynomial of L.

Theorem 2. Let L be a geometric lattice of rank n, and let z € L be a modular element. Then

(2) xek) = xp®) | Y pr@yk @ w

Y y/\z:@

T’ll skip the proof, which uses calculation in the Mobius algebra; see Stanley, HA, pp. 50-52.



Corollary 3. Let L be a geometric lattice, and let a € L be an atom. Then
xelh) = (h=1) 3 pup (0,a)k" 717,

z: xta

(We already knew that k¥ — 1 had to be a factor of x1(k), because xr(1) = > ., pr(0,2) = 0. Still, it’s
nice to see it another way.)

Corollary 4. Let L be a geometric lattice, and let z € L be a coatom that is a modular element. Then
xe(k) = (k- E)X[o,z](k)a

where e is the number of atoms a € L such that a £ z.

Example 1. Corollary ll provides another way of calculating the characteristic polynomial of II,,. Let z be

the coatom with blocks [n— 1] and {n}, which is a modular element by Proposition[[l There are n— 1 atoms
a £ z, namely the partitions whose nonsingleton block is {i,n} for some i € [n — 1], so we obtain

xm, (k) = (k—n+1)xm, (k)

and by induction
xm, (k) = (k—=1)(k-2)---(k—n+1).

Supersolvable Lattices

Let L be a geometric lattice with atoms A. Recall from (B)) that if z is a modular element of L, then the
characteristic polynomial of L factors:

xr(k) = X[Qz](k)' Z ML((ALy)]g"*T(Z)*T(y)

B y/\zzo

Of course, we can always apply this for an atom z (Corollary Bl). But, as we’ve seen with II,,, something
even better happens if z is a coatom: we can express (k) as the product of a linear form (the bracketed
sum) with the characteristic polynomial of a smaller geometric lattice, namely [0, z].

If we are extremely lucky, L will have a maximal chain of modular elements
O=mp <oy < <Tp_q1 <xp=1.

In this case, we can apply Corollary H successively with z = z,_1, 2 = @2, ..., 2 = x1 to split the
characteristic polynomial completely into linear factors:

xe(k) = (k—en-1)X4, (k)
= (k—en-1)(k— en—2)X[O,zn,2] (k)

= (k—en—1)(k —en—2) - (k—eo),
where
e; = #{atoms a of [0,2;11] | a £ 2;}
= #{acA|la<wzis1, a £z}
Definition 2. A geometric lattice L is supersolvable if it has a modular mazimal chain, that is, a maximal

chain 0 = zp <2, <--- <z, = 1 such that every x; is a modular element. A central hyperplane arrangement
A is called supersolvable if L(A) is supersolvable.

e Any modular lattice is supersolvable, because every maximal chain is modular.
e I, is supersolvable. because we can take x; to be the partition whose unique nonsingleton block is
[i + 1]. Thus the braid arrangement Br,, is supersolvable.



e Let G = C4 (a cycle with four vertices and four edges), and let A = Ag. Then L(A) is the lattice
of flats of the matroid Us(4); i.e.,

L=A{FC4: |F|#3}
with 7(F) = min(|F[, 3). This lattice is not supersolvable, because no element at rank 2 is modular.

For example, let * = 12 and y = 34; then r(z) = r(y) =2 but 7(x Vy) =3 and r(z A y) = 0.

Theorem 5. Let G = (V, E) be a simple graph. Then Ag is supersolvable if and only if the vertices of G
can be ordered vy, ...,v, such that for every ¢ > 1, the set

C; = {’Uj |]§Z, ViV EE}

forms a clique in G.

T’ll omit the proof, which is not too hard; see Stanley, pp. 55-57. An equivalent condition is that G is a
chordal graph: if C' C G is a cycle of length > 4, then some pair of vertices that are not adjacent in C are
in fact adjacent in G.

By the way, it is easy to see that if G satisfies the condition of Theorem B then the chromatic polynomial
X(G; k) splits into linear factors. Consider what happens when we color the vertices in order. When we color
vertex v;, it has |C;| neighbors that have already been colored, and they all have received different colors
because they form a clique. Therefore, there are k — |C;| possible colors available for v;, and we see that
n
x(Gi k) = []& - Icil).
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