Wednesday 3/12

Modular Elements

Let L be a lattice. Recall that L is modular if it is ranked, and its rank function r satisfies

$$
\begin{equation*}
r(x)+r(y)=r(x \vee y)+r(x \wedge y) \tag{1}
\end{equation*}
$$

for every $x, y \in L$. (This is not how we first defined modular lattices, but we proved that it is an equivalent condition; see notes from $1 / 30$ and $2 / 1$.)

Definition 1. An element $x \in L$ is a modular element if (1) holds for every $y \in L$. Thus L is modular if and only if every element of L is modular.

- The elements $\hat{0}$ and $\hat{1}$ are clearly modular in any lattice.
- If L is geometric, then every atom x is modular. Indeed, for $y \in L$, if $y \geq x$, then $y=x \vee y$ and $x=x \wedge y$, while if $y \nsupseteq x$ then $y \wedge x=\hat{0}$ and $y \vee x \gtrdot y$.
- The coatoms of a geometric lattice, however, need not be modular. Let $L=\Pi_{n}$; recall that Π_{n} has rank function $r(\pi)=n-|\pi|$. Let $x=12|34, y=13| 24 \in \Pi_{4}$. Then $r(x)=r(y)=2$, but $r(x \vee y)=r(\hat{1})=3$ and $r(x \wedge y)=r(\hat{0})=0$. So x is not a modular element.

Proposition 1. The modular elements of Π_{n} are exactly the partitions with at most one nonsingleton block.

Proof. Suppose that $\pi \in \Pi_{n}$ has one nonsingleton block B. For $\sigma \in \Pi_{n}$, let

$$
X=\{C \in \sigma \mid C \cap B \neq \emptyset\}, \quad Y=\{C \in \sigma \mid C \cap B=\emptyset\}
$$

Then

$$
\begin{aligned}
& \pi \wedge \sigma=\{C \cap B \mid C \in X\} \cup\{\{i\} \mid i \notin B\} \\
& \pi \vee \sigma=\left\{\bigcup_{C \in X} C\right\} \cup Y
\end{aligned}
$$

so

$$
\begin{aligned}
|\pi \wedge \sigma|+|\pi \vee \sigma| & =(|X|+n-|B|)+(1+|Y|) \\
& =(n-|B|+1)+(|X|+|Y|)=|\pi|+|\sigma|
\end{aligned}
$$

proving that π is a modular element.
For the converse, let B, C be nonsingleton blocks of π, then let σ have the two nonsingleton blocks $\{i, k\},\{j, \ell\}$, where $i, j \in B$ and $k, \ell \in C$. Then $r(\sigma)=2$ and $r(\pi \wedge \sigma)=r(\hat{0})=0$, but

$$
r(\pi \vee \sigma)=r(\pi)+1<r(\pi)+r(\sigma)-r(\pi \wedge \sigma)
$$

so π is not a modular element.

The usefulness of a modular element is that if one exists, we can factor the characteristic polynomial of L.
Theorem 2. Let L be a geometric lattice of rank n, and let $z \in L$ be a modular element. Then

$$
\begin{equation*}
\chi_{L}(k)=\chi_{[\hat{0}, z]}(k) \cdot\left[\sum_{y: y \wedge z=\hat{0}} \mu_{L}(\hat{0}, y) k^{n-r(z)-r(y)}\right] \tag{2}
\end{equation*}
$$

I'll skip the proof, which uses calculation in the Möbius algebra; see Stanley, HA, pp. 50-52.

Corollary 3. Let L be a geometric lattice, and let $a \in L$ be an atom. Then

$$
\chi_{L}(k)=(k-1) \sum_{x: x \nsucceq a} \mu_{L}(\hat{0}, x) k^{r(L)-1-r(x)} .
$$

(We already knew that $k-1$ had to be a factor of $\chi_{L}(k)$, because $\chi_{L}(1)=\sum_{x \in L} \mu_{L}(\hat{0}, x)=0$. Still, it's nice to see it another way.)

Corollary 4. Let L be a geometric lattice, and let $z \in L$ be a coatom that is a modular element. Then

$$
\chi_{L}(k)=(k-e) \chi_{[\hat{0}, z]}(k)
$$

where e is the number of atoms $a \in L$ such that $a \not \leq z$.
Example 1. Corollary 4 provides another way of calculating the characteristic polynomial of Π_{n}. Let z be the coatom with blocks $[n-1]$ and $\{n\}$, which is a modular element by Proposition There are $n-1$ atoms $a \not \leq z$, namely the partitions whose nonsingleton block is $\{i, n\}$ for some $i \in[n-1]$, so we obtain

$$
\chi_{\Pi_{n}}(k)=(k-n+1) \chi_{\Pi_{n-1}}(k)
$$

and by induction

$$
\chi_{\Pi_{n}}(k)=(k-1)(k-2) \cdots(k-n+1) .
$$

Supersolvable Lattices

Let L be a geometric lattice with atoms A. Recall from (2) that if z is a modular element of L, then the characteristic polynomial of L factors:

$$
\chi_{L}(k)=\chi_{[\hat{0}, z]}(k) \cdot\left[\sum_{y: y \wedge z=\hat{0}} \mu_{L}(\hat{0}, y) k^{n-r(z)-r(y)}\right]
$$

Of course, we can always apply this for an atom z (Corollary 3). But, as we've seen with Π_{n}, something even better happens if z is a coatom: we can express $\chi_{L}(k)$ as the product of a linear form (the bracketed sum) with the characteristic polynomial of a smaller geometric lattice, namely [$0, z]$.

If we are extremely lucky, L will have a maximal chain of modular elements

$$
\hat{0}=x_{0} \lessdot x_{1} \lessdot \cdots \lessdot x_{n-1} \lessdot x_{n}=\hat{1} .
$$

In this case, we can apply Corollary 4 successively with $z=x_{n-1}, z=x_{n-2}, \ldots, z=x_{1}$ to split the characteristic polynomial completely into linear factors:

$$
\begin{aligned}
\chi_{L}(k) & =\left(k-e_{n-1}\right) \chi_{\left[\hat{0}, x_{n-1}\right]}(k) \\
& =\left(k-e_{n-1}\right)\left(k-e_{n-2}\right) \chi_{\left[\hat{0}, x_{n-2}\right]}(k) \\
& =\cdots \\
& =\left(k-e_{n-1}\right)\left(k-e_{n-2}\right) \cdots\left(k-e_{0}\right)
\end{aligned}
$$

where

$$
\begin{aligned}
e_{i} & =\#\left\{\text { atoms } a \text { of }\left[\hat{0}, x_{i+1}\right] \mid a \not \leq x_{i}\right\} \\
& =\#\left\{a \in A \mid a \leq x_{i+1}, a \not \leq x_{i}\right\} .
\end{aligned}
$$

Definition 2. A geometric lattice L is supersolvable if it has a modular maximal chain, that is, a maximal chain $\hat{0}=x_{0} \lessdot x_{1} \lessdot \cdots \lessdot x_{n}=\hat{1}$ such that every x_{i} is a modular element. A central hyperplane arrangement \mathcal{A} is called supersolvable if $L(\mathcal{A})$ is supersolvable.

- Any modular lattice is supersolvable, because every maximal chain is modular.
- Π_{n} is supersolvable. because we can take x_{i} to be the partition whose unique nonsingleton block is $[i+1]$. Thus the braid arrangement $B r_{n}$ is supersolvable.
- Let $G=C_{4}$ (a cycle with four vertices and four edges), and let $\mathcal{A}=\mathcal{A}_{G}$. Then $L(\mathcal{A})$ is the lattice of flats of the matroid $U_{3}(4)$; i.e.,

$$
L=\{F \subseteq[4]:|F| \neq 3\}
$$

with $r(F)=\min (|F|, 3)$. This lattice is not supersolvable, because no element at rank 2 is modular. For example, let $x=12$ and $y=34$; then $r(x)=r(y)=2$ but $r(x \vee y)=3$ and $r(x \wedge y)=0$.
Theorem 5. Let $G=(V, E)$ be a simple graph. Then \mathcal{A}_{G} is supersolvable if and only if the vertices of G can be ordered v_{1}, \ldots, v_{n} such that for every $i>1$, the set

$$
C_{i}:=\left\{v_{j} \mid j \leq i, v_{i} v_{j} \in E\right\}
$$

forms a clique in G.

I'll omit the proof, which is not too hard; see Stanley, pp. 55-57. An equivalent condition is that G is a chordal graph: if $C \subseteq G$ is a cycle of length ≥ 4, then some pair of vertices that are not adjacent in C are in fact adjacent in G.

By the way, it is easy to see that if G satisfies the condition of Theorem then the chromatic polynomial $\chi(G ; k)$ splits into linear factors. Consider what happens when we color the vertices in order. When we color vertex v_{i}, it has $\left|C_{i}\right|$ neighbors that have already been colored, and they all have received different colors because they form a clique. Therefore, there are $k-\left|C_{i}\right|$ possible colors available for v_{i}, and we see that

$$
\chi(G ; k)=\prod_{i=1}^{n}\left(k-\left|C_{i}\right|\right)
$$

