Wednesday 3/12

Modular Elements

Let L be a lattice. Recall that L is modular if it is ranked, and its rank function r satisfies

(1)
$$r(x) + r(y) = r(x \lor y) + r(x \land y)$$

for every $x, y \in L$. (This is not how we first defined modular lattices, but we proved that it is an equivalent condition; see notes from 1/30 and 2/1.)

Definition 1. An element $x \in L$ is a **modular element** if (1) holds for every $y \in L$. Thus L is modular if and only if every element of L is modular.

• The elements $\hat{0}$ and $\hat{1}$ are clearly modular in any lattice.

• If L is geometric, then every atom x is modular. Indeed, for $y \in L$, if $y \ge x$, then $y = x \lor y$ and $x = x \land y$, while if $y \ge x$ then $y \land x = \hat{0}$ and $y \lor x > y$.

• The coatoms of a geometric lattice, however, need not be modular. Let $L = \prod_n$; recall that \prod_n has rank function $r(\pi) = n - |\pi|$. Let x = 12|34, $y = 13|24 \in \prod_4$. Then r(x) = r(y) = 2, but $r(x \lor y) = r(\hat{1}) = 3$ and $r(x \land y) = r(\hat{0}) = 0$. So x is not a modular element.

Proposition 1. The modular elements of Π_n are exactly the partitions with at most one nonsingleton block.

Proof. Suppose that $\pi \in \Pi_n$ has one nonsingleton block B. For $\sigma \in \Pi_n$, let

$$X = \{ C \in \sigma \mid C \cap B \neq \emptyset \}, \qquad Y = \{ C \in \sigma \mid C \cap B = \emptyset \}.$$

Then

$$\begin{aligned} \pi \wedge \sigma &= \Big\{ C \cap B \mid C \in X \Big\} \cup \Big\{ \{i\} \mid i \notin B \Big\}, \\ \pi \lor \sigma &= \left\{ \bigcup_{C \in X} C \right\} \cup Y \end{aligned}$$

 \mathbf{SO}

$$\begin{aligned} |\pi \wedge \sigma| + |\pi \vee \sigma| &= (|X| + n - |B|) + (1 + |Y|) \\ &= (n - |B| + 1) + (|X| + |Y|) = |\pi| + |\sigma|, \end{aligned}$$

proving that π is a modular element.

For the converse, let B, C be nonsingleton blocks of π , then let σ have the two nonsingleton blocks $\{i, k\}, \{j, \ell\}$, where $i, j \in B$ and $k, \ell \in C$. Then $r(\sigma) = 2$ and $r(\pi \land \sigma) = r(\hat{0}) = 0$, but

$$r(\pi \lor \sigma) = r(\pi) + 1 < r(\pi) + r(\sigma) - r(\pi \land \sigma)$$

so π is not a modular element.

The usefulness of a modular element is that if one exists, we can factor the characteristic polynomial of L. **Theorem 2.** Let L be a geometric lattice of rank n, and let $z \in L$ be a modular element. Then

(2)
$$\chi_L(k) = \chi_{[\hat{0},z]}(k) \cdot \left[\sum_{y: y \wedge z = \hat{0}} \mu_L(\hat{0},y) k^{n-r(z)-r(y)} \right]$$

I'll skip the proof, which uses calculation in the Möbius algebra; see Stanley, HA, pp. 50–52.

Corollary 3. Let L be a geometric lattice, and let $a \in L$ be an atom. Then

$$\chi_L(k) = (k-1) \sum_{x: x \not\geq a} \mu_L(\hat{0}, x) k^{r(L) - 1 - r(x)}$$

(We already knew that k - 1 had to be a factor of $\chi_L(k)$, because $\chi_L(1) = \sum_{x \in L} \mu_L(\hat{0}, x) = 0$. Still, it's nice to see it another way.)

Corollary 4. Let L be a geometric lattice, and let $z \in L$ be a coatom that is a modular element. Then

$$\chi_L(k) = (k-e)\chi_{[\hat{0},z]}(k),$$

where e is the number of atoms $a \in L$ such that $a \not\leq z$.

Example 1. Corollary 4 provides another way of calculating the characteristic polynomial of Π_n . Let z be the coatom with blocks [n-1] and $\{n\}$, which is a modular element by Proposition 1. There are n-1 atoms $a \leq z$, namely the partitions whose nonsingleton block is $\{i, n\}$ for some $i \in [n-1]$, so we obtain

$$\chi_{\Pi_n}(k) = (k - n + 1)\chi_{\Pi_{n-1}}(k)$$

and by induction

$$\chi_{\Pi_n}(k) = (k-1)(k-2)\cdots(k-n+1).$$

Supersolvable Lattices

Let L be a geometric lattice with atoms A. Recall from (2) that if z is a modular element of L, then the characteristic polynomial of L factors:

$$\chi_L(k) = \chi_{[\hat{0},z]}(k) \cdot \left[\sum_{y: \ y \wedge z = \hat{0}} \mu_L(\hat{0},y) k^{n-r(z)-r(y)} \right].$$

Of course, we can always apply this for an atom z (Corollary 3). But, as we've seen with Π_n , something even better happens if z is a *coatom*: we can express $\chi_L(k)$ as the product of a linear form (the bracketed sum) with the characteristic polynomial of a smaller geometric lattice, namely $[\hat{0}, z]$.

If we are extremely lucky, L will have a maximal chain of modular elements

$$\hat{0} = x_0 \lessdot x_1 \lessdot \cdots \lessdot x_{n-1} \lessdot x_n = \hat{1}.$$

In this case, we can apply Corollary 4 successively with $z = x_{n-1}$, $z = x_{n-2}$, ..., $z = x_1$ to split the characteristic polynomial completely into linear factors:

$$\chi_L(k) = (k - e_{n-1})\chi_{[\hat{0}, x_{n-1}]}(k)$$

= $(k - e_{n-1})(k - e_{n-2})\chi_{[\hat{0}, x_{n-2}]}(k)$
= ...
= $(k - e_{n-1})(k - e_{n-2})\cdots(k - e_0)$

where

$$e_i = \#\{\text{atoms } a \text{ of } [0, x_{i+1}] \mid a \not\leq x_i \} \\ = \#\{a \in A \mid a \leq x_{i+1}, a \not\leq x_i \}.$$

Definition 2. A geometric lattice L is **supersolvable** if it has a *modular maximal chain*, that is, a maximal chain $\hat{0} = x_0 < x_1 < \cdots < x_n = \hat{1}$ such that every x_i is a modular element. A central hyperplane arrangement \mathcal{A} is called supersolvable if $L(\mathcal{A})$ is supersolvable.

- Any modular lattice is supersolvable, because every maximal chain is modular.
- Π_n is supersolvable. because we can take x_i to be the partition whose unique nonsingleton block is [i+1]. Thus the braid arrangement Br_n is supersolvable.

• Let $G = C_4$ (a cycle with four vertices and four edges), and let $\mathcal{A} = \mathcal{A}_G$. Then $L(\mathcal{A})$ is the lattice of flats of the matroid $U_3(4)$; i.e.,

$$L = \{F \subseteq [4] : |F| \neq 3\}$$

with $r(F) = \min(|F|, 3)$. This lattice is not supersolvable, because no element at rank 2 is modular. For example, let x = 12 and y = 34; then r(x) = r(y) = 2 but $r(x \lor y) = 3$ and $r(x \land y) = 0$.

Theorem 5. Let G = (V, E) be a simple graph. Then \mathcal{A}_G is supersolvable if and only if the vertices of G can be ordered v_1, \ldots, v_n such that for every i > 1, the set

$$C_i := \{ v_j \mid j \le i, v_i v_j \in E \}$$

forms a clique in G.

I'll omit the proof, which is not too hard; see Stanley, pp. 55–57. An equivalent condition is that G is a **chordal graph**: if $C \subseteq G$ is a cycle of length ≥ 4 , then some pair of vertices that are not adjacent in C are in fact adjacent in G.

By the way, it is easy to see that if G satisfies the condition of Theorem 5, then the chromatic polynomial $\chi(G; k)$ splits into linear factors. Consider what happens when we color the vertices in order. When we color vertex v_i , it has $|C_i|$ neighbors that have already been colored, and they all have received different colors because they form a clique. Therefore, there are $k - |C_i|$ possible colors available for v_i , and we see that

$$\chi(G; k) = \prod_{i=1}^{n} (k - |C_i|).$$