Friday 3/7

Counting Regions of Hyperplane Arrangements

For $\mathcal{A} \subset \mathbb{R}^n$ a real hyperplane arrangement, we defined last time

 $\begin{aligned} r(\mathcal{A}) &= \# \text{ of regions of } \mathcal{A}, \\ b(\mathcal{A}) &= \# \text{ of relatively bounded regions of } \mathcal{A}. \end{aligned}$

Also, we proved the following recurrence.

Proposition 1. For $H \in \mathcal{A}$, let

$$\begin{aligned} \mathcal{A}' &= \mathcal{A} \setminus \{H\}, \\ \mathcal{A}'' &= \mathcal{A}^H &= \{W \cap H \mid W \in \mathcal{A}, \ W \not\supseteq H\}. \end{aligned}$$

Then

(1)
$$r(\mathcal{A}) = r(\mathcal{A}') + r(\mathcal{A}'')$$

and

(2)
$$b(\mathcal{A}) = \begin{cases} b(\mathcal{A}') + b(\mathcal{A}'') & \text{if } \operatorname{rank} \mathcal{A} = \operatorname{rank} \mathcal{A}', \\ 0 & \text{if } \operatorname{rank} \mathcal{A} = \operatorname{rank} \mathcal{A}' + 1. \end{cases}$$

Proposition 2 (Deletion/Restriction). Let \mathcal{A} be a real arrangement and $H \in \mathcal{A}$. Let $\mathcal{A}' = \mathcal{A} \setminus \{H\}$ and $\mathcal{A}'' = \mathcal{A}^H$. Then

(3)
$$\chi_{\mathcal{A}}(k) = \chi_{\mathcal{A}'}(k) - \chi_{\mathcal{A}''}(k).$$

Proof. First, we establish Whitney's formula for the characteristic polynomial. Consider the interval $[\hat{0}, x]$. The atoms in this interval are the hyperplanes of \mathcal{A} containing x, and they form a lower crosscut of $[\hat{0}, x]$. Therefore, the crosscut theorem (3/3/08) says that

(4)
$$\mu(\hat{0}, x) = \sum_{Y \subset \mathcal{A}: \ x = \bigcap Y} (-1)^{|Y|}.$$

Plugging (4) into the definition of the characteristic polynomial, we get

(5)

$$\chi_{\mathcal{A}}(k) = \sum_{x \in L(\mathcal{A})} \sum_{Y \subset \mathcal{A}: x = \bigcap Y} (-1)^{|Y|} k^{\dim x}$$

$$= \sum_{Y \subset \mathcal{A}: \bigcap Y \neq 0} (-1)^{|Y|} k^{\dim \bigcap Y}$$

$$= \sum_{\text{central } \mathcal{B} \subseteq \mathcal{A}} (-1)^{|\mathcal{B}|} k^{\dim \mathcal{A} - \text{rank } \mathcal{B}}$$

which is Whitney's formula.

Now, split the sum in (5) into two pieces, depending on whether or not $H \in \mathcal{B}$. First,

(6)
$$\sum_{\text{central }\mathcal{B}\subseteq\mathcal{A}:\ H\notin\mathcal{B}} (-1)^{|\mathcal{B}|} k^{\dim\mathcal{A}-\operatorname{rank}\mathcal{B}} = \sum_{\text{central }\mathcal{B}\subseteq\mathcal{A}'} (-1)^{|\mathcal{B}|} k^{\dim\mathcal{A}-\operatorname{rank}\mathcal{B}} = \chi_{\mathcal{A}'}(k).$$

Second, suppose $\mathcal{B} \subseteq \mathcal{A}$ is a central arrangement containing H. This is a little trickier because hyperplanes that are distinct in \mathcal{A} do not necessarily correspond to distinct hyperplanes in \mathcal{A}'' , so we have to do a bit more work to rewrite the other subsum of (5) as a sum over central subarrangements of \mathcal{A}'' . (Stanley's notes do not discuss this issue.) Define a map $\pi : \mathcal{A}' \to \mathcal{A}''$ by $\pi(x) = x \cap H$; then

$$\sum_{\substack{\mathcal{B}\subseteq\mathcal{A}\\\mathcal{B} \text{ central, } H\in\mathcal{B}}} (-1)^{|\mathcal{B}|} k^{\dim\mathcal{A}-\operatorname{rank}\mathcal{B}}$$

$$= \sum_{\mathcal{C} \subseteq \mathcal{A}'' \text{central}} \sum_{\substack{\mathcal{B} \subseteq \mathcal{A}'' \\ H \in \mathcal{B}, \ \pi(\mathcal{B}) = \mathcal{C}}} (-1)^{|\mathcal{B}|} k^{\dim \mathcal{A}'' - \operatorname{rank} \mathcal{C}}$$

$$= -\sum_{\substack{\mathcal{C}\subseteq\mathcal{A}'' \text{ central}\\\mathcal{C}=\{H_1'',\dots,H_s''\}}} k^{\dim\mathcal{A}''-\operatorname{rank}\mathcal{C}} \left(\sum_{\emptyset\neq\mathcal{B}_1\subseteq\pi^{-1}H_1''}\cdots\sum_{\emptyset\neq\mathcal{B}_1\subseteq\pi^{-1}H_s''} (-1)^{|\mathcal{B}_1|}\cdots(-1)^{|\mathcal{B}_s|}\right)$$

(7)
$$= -\sum_{\substack{\mathcal{C}\subseteq\mathcal{A}'' \text{ central}\\|\mathcal{C}|=s}} k^{\dim\mathcal{A}''-\operatorname{rank}\mathcal{C}}(-1)^s = -\chi_{\mathcal{A}''}(k).$$

Now the desired recurrence follows from (5), (6) and (7).

Theorem 3 (Zaslavsky 1975). Let \mathcal{A} be a real hyperplane arrangement. Then

(8)
$$r(\mathcal{A}) = (-1)^{\dim \mathcal{A}} \chi_{\mathcal{A}}(-1)$$

(9) $c(\mathcal{A}) = (-1)^{\operatorname{rank}\mathcal{A}}\chi_{\mathcal{A}}(1).$

Sketch of proof. Compare the recurrences for r and c proved last time with those for these evaluations of the characteristic polynomial (from Proposition 2).

Corollary 4. Let $\mathcal{A} \subset \mathbb{R}^n$ be a central, essential hyperplane arrangement, so that $L(\mathcal{A})$ is a geometric lattice. Let M be the corresponding matroid. Then

$$r(\mathcal{A}) = T(M; 2, 0), \qquad c(\mathcal{A}) = T(M; 0, 0) = 0.$$

Proof. Combine Zaslavsky's theorem with the formula $\chi_{\mathcal{A}}(k) = (-1)^n T(M; 1-k, 0).$

Example 1. Let $m \ge n$, and let \mathcal{A} be an arrangement of m linear hyperplanes in general position in \mathbb{R}^n . The corresponding matroid M is $U_n(m)$, whose rank function is

$$r(A) = \min(n, |A|)$$

for $A \subseteq [m]$. Therefore

$$r(\mathcal{A}) = T(M; 2, 0) = \sum_{A \subseteq [m]} (1-1)^{n-r(A)} (0-1)^{|\mathcal{A}|-r(A)}$$

$$= \sum_{A \subseteq [m]} (-1)^{|\mathcal{A}|-r(A)}$$

$$= \sum_{k=0}^{m} \binom{m}{k} (-1)^{k-\min(n,k)}$$

$$= \sum_{k=0}^{n} \binom{m}{k} + \sum_{k=n+1}^{m} \binom{m}{k} (-1)^{k-n}$$

$$= \sum_{k=0}^{n} \binom{m}{k} (1-(-1)^{k-n}) + \sum_{k=0}^{m} \binom{m}{k} (-1)^{k-n}$$

$$= \sum_{k=0}^{n} \binom{m}{k} (1-(-1)^{k-n})$$

$$= 2\left(\binom{m}{n-1} + \binom{m}{n-3} + \cdots\right).$$

$$= 3 \text{ then}$$

For instance, if n = 3 then

$$r(\mathcal{A}) = 2\left(\binom{m}{2} + \binom{m}{0}\right) = m^2 - m + 2.$$

Notice that this is *not* the same as the formula we obtained last time for the number of regions formed by m affine lines in general position in \mathbb{R}^2 .

Another Interpretation of the Characteristic Polynomial

Let \mathbb{F}_q be the finite field of order q, and let $\mathcal{A} \subset \mathbb{F}_q^n$ be a hyperplane arrangement. The "regions" of $\mathbb{F}_q^n \setminus \mathcal{A}$ are just its points (assuming, if you wish, that we endow K^n with the discrete topology). The following result is implicit in the work of Crapo and Rota (1970) and was stated explicitly by Athanasiadis (1996):

Proposition 5. $|\mathbb{F}_q^n \setminus \mathcal{A}| = \chi_{\mathcal{A}}(q).$

Proof. By inclusion-exclusion, we have

$$|\mathbb{F}_q^n \setminus \mathcal{A}| = \sum_{\mathcal{B} \subseteq \mathcal{A}} (-1)^{|\mathcal{B}|} \left| \bigcap \mathcal{B} \right|.$$

If \mathcal{B} is not central, then by definition $|\bigcap \mathcal{B}| = 0$. Otherwise, $|\bigcap \mathcal{B}| = q^{n-\operatorname{rank} \mathcal{B}}$. So the sum becomes Whitney's formula for $\chi_{\mathcal{A}}(q)$.

This fact has a much more general application, which was systematically mined by Athanasiadis (1996). Let $\mathcal{A} \subset \mathbb{R}^n$ be an arrangement defined over the integers (i.e., such that the normal vectors to its hyperplanes lie in \mathbb{Z}^n). For a prime p, let $\mathcal{A}_p \subset \mathbb{F}_p^n$ be the arrangement defined by regarding the coordinates of the normal vectors as numbers modulo p. If p is sufficiently large, then it will be the case that $L(\mathcal{A}_p) \cong L(\mathcal{A})$. In this case we say that \mathcal{A} reduces correctly modulo p. But that means that we can compute the characteristic polynomial of \mathcal{A} by counting the points of \mathcal{A}_p as a function of p, for large enough p.