Friday 3/7

Counting Regions of Hyperplane Arrangements

For $\mathcal{A} \subset \mathbb{R}^{n}$ a real hyperplane arrangement, we defined last time

$$
\begin{aligned}
r(\mathcal{A}) & =\# \text { of regions of } \mathcal{A} \\
b(\mathcal{A}) & =\# \text { of relatively bounded regions of } \mathcal{A}
\end{aligned}
$$

Also, we proved the following recurrence.
Proposition 1. For $H \in \mathcal{A}$, let

$$
\begin{aligned}
\mathcal{A}^{\prime} & =\mathcal{A} \backslash\{H\} \\
\mathcal{A}^{\prime \prime} & =\mathcal{A}^{H}=\{W \cap H \mid W \in \mathcal{A}, W \nsupseteq H\} .
\end{aligned}
$$

Then

$$
\begin{equation*}
r(\mathcal{A})=r\left(\mathcal{A}^{\prime}\right)+r\left(\mathcal{A}^{\prime \prime}\right) \tag{1}
\end{equation*}
$$

and

$$
b(\mathcal{A})= \begin{cases}b\left(\mathcal{A}^{\prime}\right)+b\left(\mathcal{A}^{\prime \prime}\right) & \text { if } \operatorname{rank} \mathcal{A}=\operatorname{rank} \mathcal{A}^{\prime} \tag{2}\\ 0 & \text { if } \operatorname{rank} \mathcal{A}=\operatorname{rank} \mathcal{A}^{\prime}+1\end{cases}
$$

Proposition 2 (Deletion/Restriction). Let \mathcal{A} be a real arrangement and $H \in \mathcal{A}$. Let $\mathcal{A}^{\prime}=\mathcal{A} \backslash\{H\}$ and $\mathcal{A}^{\prime \prime}=\mathcal{A}^{H}$. Then

$$
\begin{equation*}
\chi_{\mathcal{A}}(k)=\chi_{\mathcal{A}^{\prime}}(k)-\chi_{\mathcal{A}^{\prime \prime}}(k) . \tag{3}
\end{equation*}
$$

Proof. First, we establish Whitney's formula for the characteristic polynomial. Consider the interval [0, x]. The atoms in this interval are the hyperplanes of \mathcal{A} containing x, and they form a lower crosscut of $[\hat{0}, x]$. Therefore, the crosscut theorem $(3 / 3 / 08)$ says that

$$
\begin{equation*}
\mu(\hat{0}, x)=\sum_{Y \subset \mathcal{A}: x=\bigcap Y}(-1)^{|Y|} \tag{4}
\end{equation*}
$$

Plugging (4) into the definition of the characteristic polynomial, we get

$$
\begin{align*}
\chi_{\mathcal{A}}(k) & =\sum_{x \in L(\mathcal{A})} \sum_{Y \subset \mathcal{A}: x=\cap Y}(-1)^{|Y|} k^{\operatorname{dim} x} \\
& =\sum_{Y \subset \mathcal{A}: \cap Y \neq 0}(-1)^{|Y|} k^{\operatorname{dim} \cap Y} \\
& =\sum_{\text {central } \mathcal{B} \subseteq \mathcal{A}}(-1)^{|\mathcal{B}|} k^{\operatorname{dim} \mathcal{A}-\operatorname{rank} \mathcal{B}} \tag{5}
\end{align*}
$$

which is Whitney's formula.
Now, split the sum in (5) into two pieces, depending on whether or not $H \in \mathcal{B}$. First,

$$
\begin{equation*}
\sum_{\text {central } \mathcal{B} \subseteq \mathcal{A}: H \notin \mathcal{B}}(-1)^{|\mathcal{B}|} k^{\operatorname{dim} \mathcal{A}-\operatorname{rank} \mathcal{B}}=\sum_{\text {central } \mathcal{B} \subseteq \mathcal{A}^{\prime}}(-1)^{|\mathcal{B}|} k^{\operatorname{dim} \mathcal{A}-\operatorname{rank} \mathcal{B}}=\chi_{\mathcal{A}^{\prime}}(k) . \tag{6}
\end{equation*}
$$

Second, suppose $\mathcal{B} \subseteq \mathcal{A}$ is a central arrangement containing H. This is a little trickier because hyperplanes that are distinct in \mathcal{A} do not necessarily correspond to distinct hyperplanes in $\mathcal{A}^{\prime \prime}$, so we have to do a bit more work to rewrite the other subsum of (5) as a sum over central subarrangements of $\mathcal{A}^{\prime \prime}$. (Stanley's notes do not discuss this issue.) Define a map $\pi: \mathcal{A}^{\prime} \rightarrow \mathcal{A}^{\prime \prime}$ by $\pi(x)=x \cap H$; then

$$
\sum_{\substack{\mathcal{B} \subseteq \mathcal{A} \\ \mathcal{B} \text { central, } H \in \mathcal{B}}}(-1)^{|\mathcal{B}|} k^{\operatorname{dim} \mathcal{A}-\operatorname{rank} \mathcal{B}}
$$

$$
=\sum_{\mathcal{C} \subseteq \mathcal{A}^{\prime \prime} \text { central }} \sum_{\substack{\mathcal{B} \subseteq \mathcal{A}^{\prime \prime} \\ H \in \mathcal{B}, \pi(\mathcal{B})=\mathcal{C}}}(-1)^{|\mathcal{B}|} k^{\operatorname{dim} \mathcal{A}^{\prime \prime}-\operatorname{rank} \mathcal{C}}
$$

$$
\begin{equation*}
=-\sum_{\substack{\mathcal{C} \subseteq \mathcal{A}^{\prime \prime} \text { central } \\|\mathcal{C}|=s}} k^{\operatorname{dim} \mathcal{A}^{\prime \prime}-\operatorname{rank} \mathcal{C}}(-1)^{s}=-\chi_{\mathcal{A}^{\prime \prime}}(k) \tag{7}
\end{equation*}
$$

Now the desired recurrence follows from (5), (6) and (7).
Theorem 3 (Zaslavsky 1975). Let \mathcal{A} be a real hyperplane arrangement. Then

$$
\begin{align*}
r(\mathcal{A}) & =(-1)^{\operatorname{dim} \mathcal{A}} \chi_{\mathcal{A}}(-1) \tag{8}\\
c(\mathcal{A}) & =(-1)^{\operatorname{rank} \mathcal{A}^{\prime}} \chi_{\mathcal{A}}(1) \tag{9}
\end{align*}
$$

Sketch of proof. Compare the recurrences for r and c proved last time with those for these evaluations of the characteristic polynomial (from Proposition (2).

Corollary 4. Let $\mathcal{A} \subset \mathbb{R}^{n}$ be a central, essential hyperplane arrangement, so that $L(\mathcal{A})$ is a geometric lattice. Let M be the corresponding matroid. Then

$$
r(\mathcal{A})=T(M ; 2,0), \quad c(\mathcal{A})=T(M ; 0,0)=0
$$

Proof. Combine Zaslavsky's theorem with the formula $\chi_{\mathcal{A}}(k)=(-1)^{n} T(M ; 1-k, 0)$.

Example 1. Let $m \geq n$, and let \mathcal{A} be an arrangement of m linear hyperplanes in general position in \mathbb{R}^{n}. The corresponding matroid M is $U_{n}(m)$, whose rank function is

$$
r(A)=\min (n,|A|)
$$

for $A \subseteq[m]$. Therefore

$$
\begin{aligned}
r(\mathcal{A})=T(M ; 2,0) & =\sum_{A \subseteq[m]}(1-1)^{n-r(A)}(0-1)^{|A|-r(A)} \\
& =\sum_{A \subseteq[m]}(-1)^{|A|-r(A)} \\
& =\sum_{k=0}^{m}\binom{m}{k}(-1)^{k-\min (n, k)} \\
& =\sum_{k=0}^{n}\binom{m}{k}+\sum_{k=n+1}^{m}\binom{m}{k}(-1)^{k-n} \\
& =\sum_{k=0}^{n}\binom{m}{k}\left(1-(-1)^{k-n}\right)+\sum_{k=0}^{m}\binom{m}{k}(-1)^{k-n} \\
& =\sum_{k=0}^{n}\binom{m}{k}\left(1-(-1)^{k-n}\right) \\
& =2\left(\binom{m}{n-1}+\binom{m}{n-3}+\cdots\right)
\end{aligned}
$$

For instance, if $n=3$ then

$$
r(\mathcal{A})=2\left(\binom{m}{2}+\binom{m}{0}\right)=m^{2}-m+2
$$

Notice that this is not the same as the formula we obtained last time for the number of regions formed by m affine lines in general position in \mathbb{R}^{2}.

Another Interpretation of the Characteristic Polynomial

Let \mathbb{F}_{q} be the finite field of order q, and let $\mathcal{A} \subset \mathbb{F}_{q}^{n}$ be a hyperplane arrangement. The "regions" of $\mathbb{F}_{q}^{n} \backslash \mathcal{A}$ are just its points (assuming, if you wish, that we endow K^{n} with the discrete topology). The following result is implicit in the work of Crapo and Rota (1970) and was stated explicitly by Athanasiadis (1996):
Proposition 5. $\left|\mathbb{F}_{q}^{n} \backslash \mathcal{A}\right|=\chi_{\mathcal{A}}(q)$.

Proof. By inclusion-exclusion, we have

$$
\left|\mathbb{F}_{q}^{n} \backslash \mathcal{A}\right|=\sum_{\mathcal{B} \subseteq \mathcal{A}}(-1)^{|\mathcal{B}|}|\bigcap \mathcal{B}| .
$$

If \mathcal{B} is not central, then by definition $|\cap \mathcal{B}|=0$. Otherwise, $|\cap \mathcal{B}|=q^{n-\operatorname{rank} \mathcal{B}}$. So the sum becomes Whitney's formula for $\chi_{\mathcal{A}}(q)$.

This fact has a much more general application, which was systematically mined by Athanasiadis (1996). Let $\mathcal{A} \subset \mathbb{R}^{n}$ be an arrangement defined over the integers (i.e., such that the normal vectors to its hyperplanes lie in $\left.\mathbb{Z}^{n}\right)$. For a prime p, let $\mathcal{A}_{p} \subset \mathbb{F}_{p}^{n}$ be the arrangement defined by regarding the coordinates of the normal vectors as numbers modulo p. If p is sufficiently large, then it will be the case that $L\left(\mathcal{A}_{p}\right) \cong L(\mathcal{A})$. In this case we say that \mathcal{A} reduces correctly modulo p. But that means that we can compute the characteristic polynomial of \mathcal{A} by counting the points of \mathcal{A}_{p} as a function of p, for large enough p.

