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Counting Regions of Hyperplane Arrangements

For A ⊂ R
n a real hyperplane arrangement, we defined last time

r(A) = # of regions of A,

b(A) = # of relatively bounded regions of A.

Also, we proved the following recurrence.

Proposition 1. For H ∈ A, let

A′ = A \ {H},

A′′ = AH = {W ∩ H | W ∈ A, W 6⊇ H}.

Then

(1) r(A) = r(A′) + r(A′′)

and

(2) b(A) =

{

b(A′) + b(A′′) if rankA = rankA′,

0 if rankA = rankA′ + 1.

Proposition 2 (Deletion/Restriction). Let A be a real arrangement and H ∈ A. Let A′ = A \ {H} and

A′′ = AH . Then

(3) χA(k) = χA′(k) − χA′′(k).

Proof. First, we establish Whitney’s formula for the characteristic polynomial. Consider the interval [0̂, x].

The atoms in this interval are the hyperplanes of A containing x, and they form a lower crosscut of [0̂, x].
Therefore, the crosscut theorem (3/3/08) says that

(4) µ(0̂, x) =
∑

Y ⊂A: x=
T

Y

(−1)|Y |.

Plugging (4) into the definition of the characteristic polynomial, we get

χA(k) =
∑

x∈L(A)

∑

Y ⊂A: x=
T

Y

(−1)|Y |kdimx

=
∑

Y ⊂A:
T

Y 6=0

(−1)|Y |kdim
T

Y

=
∑

central B⊆A

(−1)|B|kdimA−rankB(5)

which is Whitney’s formula.

Now, split the sum in (5) into two pieces, depending on whether or not H ∈ B. First,

(6)
∑

central B⊆A: H 6∈B

(−1)|B|kdimA−rankB =
∑

central B⊆A′

(−1)|B|kdimA−rankB = χA′(k).

Second, suppose B ⊆ A is a central arrangement containing H . This is a little trickier because hyperplanes
that are distinct in A do not necessarily correspond to distinct hyperplanes in A′′, so we have to do a bit
more work to rewrite the other subsum of (5) as a sum over central subarrangements of A′′. (Stanley’s notes
do not discuss this issue.) Define a map π : A′ → A′′ by π(x) = x ∩ H ; then



∑

B⊆A
B central, H∈B

(−1)|B|kdimA−rankB

=
∑

C⊆A′′central

∑

B⊆A′′

H∈B, π(B)=C

(−1)|B|kdimA′′−rank C

= −
∑

C⊆A′′central
C={H′′

1
,...,H′′

s
}

kdimA′′−rankC





∑

∅6=B1⊆π−1H′′

1

· · ·
∑

∅6=B1⊆π−1H′′

s

(−1)|B1| · · · (−1)|Bs|





= −
∑

C⊆A′′central
|C|=s

kdimA′′−rankC(−1)s = −χA′′(k).(7)

Now the desired recurrence follows from (5), (6) and (7). �

Theorem 3 (Zaslavsky 1975). Let A be a real hyperplane arrangement. Then

r(A) = (−1)dimAχA(−1),(8)

c(A) = (−1)rankAχA(1).(9)

Sketch of proof. Compare the recurrences for r and c proved last time with those for these evaluations of
the characteristic polynomial (from Proposition 2). �

Corollary 4. Let A ⊂ R
n be a central, essential hyperplane arrangement, so that L(A) is a geometric

lattice. Let M be the corresponding matroid. Then

r(A) = T (M ; 2, 0), c(A) = T (M ; 0, 0) = 0.

Proof. Combine Zaslavsky’s theorem with the formula χA(k) = (−1)nT (M ; 1 − k, 0). �



Example 1. Let m ≥ n, and let A be an arrangement of m linear hyperplanes in general position in R
n.

The corresponding matroid M is Un(m), whose rank function is

r(A) = min(n, |A|)

for A ⊆ [m]. Therefore

r(A) = T (M ; 2, 0) =
∑

A⊆[m]

(1 − 1)n−r(A)(0 − 1)|A|−r(A)

=
∑

A⊆[m]

(−1)|A|−r(A)

=

m
∑

k=0

(

m

k

)

(−1)k−min(n,k)

=

n
∑

k=0

(

m

k

)

+

m
∑

k=n+1

(

m

k

)

(−1)k−n

=

n
∑

k=0

(

m

k

)

(1 − (−1)k−n) +

m
∑

k=0

(

m

k

)

(−1)k−n

=

n
∑

k=0

(

m

k

)

(1 − (−1)k−n)

= 2

((

m

n − 1

)

+

(

m

n − 3

)

+ · · ·

)

.

For instance, if n = 3 then

r(A) = 2

((

m

2

)

+

(

m

0

))

= m2 − m + 2.

Notice that this is not the same as the formula we obtained last time for the number of regions formed by
m affine lines in general position in R

2.

Another Interpretation of the Characteristic Polynomial

Let Fq be the finite field of order q, and let A ⊂ F
n
q be a hyperplane arrangement. The “regions” of F

n
q \ A

are just its points (assuming, if you wish, that we endow Kn with the discrete topology). The following
result is implicit in the work of Crapo and Rota (1970) and was stated explicitly by Athanasiadis (1996):

Proposition 5. |Fn
q \ A| = χA(q).

Proof. By inclusion-exclusion, we have

|Fn
q \ A| =

∑

B⊆A

(−1)|B|
∣

∣

∣

⋂

B
∣

∣

∣ .

If B is not central, then by definition |
⋂

B| = 0. Otherwise, |
⋂

B| = qn−rankB. So the sum becomes Whitney’s
formula for χA(q). �

This fact has a much more general application, which was systematically mined by Athanasiadis (1996). Let
A ⊂ R

n be an arrangement defined over the integers (i.e., such that the normal vectors to its hyperplanes lie
in Z

n). For a prime p, let Ap ⊂ F
n
p be the arrangement defined by regarding the coordinates of the normal

vectors as numbers modulo p. If p is sufficiently large, then it will be the case that L(Ap) ∼= L(A). In this
case we say that A reduces correctly modulo p. But that means that we can compute the characteristic
polynomial of A by counting the points of Ap as a function of p, for large enough p.


