
Monday 3/3

Crosscuts

Recall that the Möbius algebra A(L) of a lattice L is the vector space of formal C-linear combinations of
elements of L, with multiplication given by the meet operation.

We showed last time that A(L) ∼= C
|L| as rings, because the elements εx =

∑

y≤x µ(y, x)y satisfy εxεy = δxyεx

(where δxy is the Kronecker delta).

Definition 1. Let L be a lattice.
— An upper crosscut of L is a set X ⊂ L \ {1̂} such that if y ∈ L \ X \ {1̂}, then y < x for some x ∈ X .

— A lower crosscut of L is a set X ⊂ L \ {0̂} such that if y ∈ L \ X \ {0̂}, then y > x for some x ∈ X .

Proposition 1 (Rota’s Crosscut Theorem). Let L be a finite lattice and let X be an upper crosscut. Then

(1a) µ(L) =
∑

Y ⊆X:
V

Y =0̂

(−1)|Y |.

Dually, if X is a lower crosscut, then

(1b) µ(L) =
∑

Y ⊆X:
W

Y =1̂

(−1)|Y |.

Proof. Let x ∈ L. We have the following equation in the Möbius algebra of L:

1̂ − x =





∑

y∈L

εy



−





∑

y≤x

εy



 =





∑

y 6≤x

εy



 .

Therefore
∏

x∈X

(1̂ − x) =
∏

x∈X





∑

y 6≤x

εy



 =
∑

y∈Y

εy

where Y = {y ∈ L | y 6≤ x for all x ∈ X}. But Y = {1̂} because X is an upper crosscut. That is,

(2)
∏

x∈X

(1̂ − x) = ε1̂ =
∑

y∈L

µ(y, 1̂)y.

On the other hand

(3)
∏

x∈X

(1̂ − x) =
∑

A⊆X

(−1)|A|
∧

A.

Now extracting the coefficient of 0̂ on the right-hand sides of (2) and (3) yields (1a). The proof of (1b) is
similar. �

We already know that µ(Bn) = (−1)n. What if L is distributive but not Boolean?

Proposition 2. Let L be a distributive lattice that is not Boolean. Then µ(L) = 0.

Proof. The set X of atoms of L is a lower crosscut. Since L is not Boolean, it has a join-irreducible element
b 6∈ X . But b 6≤

∨

X because b 6≤ a for all a ∈ X (this is Lemma 2 of the lecture notes from 1/28/07). In

particular,
∨

X 6= 1̂, so the sum on the right-hand side of (1b) is empty. �

More generally, µ(L) = 0 if L is a lattice in which 1̂ is not a join of atoms (or, dually, if 0̂ is not a meet of
coatoms).

The crosscut theorem will also be useful in studying hyperplane arrangements.



A Topological Application

Proposition 3. Let P be a chain-finite, bounded poset, and let

ci =
∣

∣

∣{0̂ = x0 < x1 < · · · < xi = 1̂}
∣

∣

∣,

the number of chains of length i between 0̂ and 1̂. Then

(4) µ(P ) =
∑

i

(−1)ici.

Proof. The incidence algebra makes the proof almost trivial. Recall that ci = ηi(0̂, 1̂) = (ζ − 1)i(0̂, 1̂). Since
sufficiently high powers of η vanish,

(1 − η)

(

∞
∑

i=0

ηi

)

= 1

is a perfectly good equation in I(P ). Therefore

∞
∑

i=0

ci =

∞
∑

i=0

ηi(0̂, 1̂) = (1 − η)−1(0̂, 1̂) = ζ−1(0̂, 1̂) = µ(0̂, 1̂). �

The expression (4) looks like an Euler characteristic. Indeed, let P be a finite poset. The order complex

of P is defined as the simplicial complex ∆ = ∆(P ) whose vertices are elements of P and whose faces are
chains of P . Then Proposition 3 implies that µ(P ) is the reduced Euler characteristic of ∆.

Another nice fact is the following result due to J. Folkman (1966), whose proof used the crosscut theorem.

Theorem 4. Let L be a geometric lattice of rank r, and let P = L \ {0̂, 1̂}. Then

H̃i(∆(P ), Z) ∼=

{

Z|µ(L)| if i = r − 2,

0 otherwise

where H̃i denotes reduced simplicial homology.



Hyperplane Arrangements

Definition 2. Let K be a field and n ≥ 1. A linear hyperplane in Kn is a vector subspace of codimension 1.
An affine hyperplane is a translate of a linear hyperplane. A hyperplane arrangement A is a finite
collection of (distinct) hyperplanes. The number n is called the dimension of A.

Example 1. The left-hand arrangement A1 is linear; it consists of the lines x = 0, y = 0, and x = y. The
right-hand arrangement A2 is affine; it consists of the four lines x = y, x = −y, y = 1 and y = −1.

Each hyperplane is the zero set of some linear form, so their union is the zero set of the product of those s
linear forms. We can specify an arrangement concisely by that product, called the defining polynomial of
A (as an algebraic variety, in fact). For example, the defining polynomials of A1 and A2 are xy(x − y) and
xy(x − y − 1) respectively.

Example 2. Here are some 3-D arrangements (pictures produced using Maple). The Boolean arrangement

Bn consists of the coordinate hyperplanes in n-space, so its defining polynomial is x1x2 . . . xn. Here’s B3.

The braid arrangement Bn consists of the
(

n
2

)

hyperplanes xi − xj in n-space, so its defining polynomial is
∏

1≤i<j≤n

xi − xj .

Here’s Br3.



Every hyperplane in Bn contains the line spanned by the all-ones vector. If we project R4 to the quotient
by that line, then A4 ends up looking like this:

The Intersection Poset

Definition 3. Let A ⊂ Kn be an arrangement. Its intersection poset L(A) is the poset of all intersections

of subsets of A, ordered by reverse inclusion. This poset always has a 0̂ element, namely Kn. It has a 1̂
element if and only if

⋂

H∈A H 6= ∅; such an arrangement is called central.

Proposition 5. Let A ⊂ Kn be an arrangement. The following are equivalent:

• A is central.

• A is a translation of a linear arrangement.

• L(A) is a geometric lattice.

Proof. Linear arrangements are central because every hyperplane contains ~0 ∈ Kn. Conversely, if A is
central and p ∈

⋂

H∈A H , then translating everything by −p produces a linear arrangement.

If A is central, then L(A) is bounded. It is a join-semilattice, with join given by intersection, hence it is a
lattice. Indeed, it is a geometric lattice (it is clearly atomic, and it is submodular because it is a sublattice
of the chain-finite modular lattice L(Kn)∗ — that is, the dual of the lattice of all subspaces of Kn). �

When A is central (we may as well assume linear), the matroid associated with L(A) is naturally represented
by the normal vectors to the hyperplanes in A.

Therefore, all of the tools we have developed for looking at lattices and matroids can be applied to study
hyperplane arrangements.



The dimension of an arrangement cannot be inferred from the intersection poset. For example, if A1 is as
above, then L(A1) ∼= L(Br3) but dimA1 = 2 and dim Br3 = 3. A more useful invariant of A is its rank

rankA, defined as the rank of L(A). Equivalently, define W ⊂ Kn to be the subspace spanned by the normal
vectors vi. Then rankA = dim W .

Definition 4. An arrangement A is essential if rankA = dimA. In general, the essentialization ess(A)
is the arrangement

{H ∩ W | H ∈ A} ⊂ W.

Equivalently, if V = W⊥ =
⋂

H∈A H , then rankA = n − dim V , and we could define the essentialization of
A as a quotient:

{H/V | H ∈ A} ⊂ Kn/V }.

Observe that ess(A) is essential, and that L(A) is naturally isomorphic to L(ess(A)).


