Friday 2/29

More on the Characteristic Polynomial

Definition 1. Let P be a finite graded poset with rank function r, and suppose that $r(\hat{1}) = n$. The *characteristic polynomial* of P is defined as

$$\chi(P;x) = \sum_{z \in P} \mu(\hat{0},z) x^{n-r(z)}.$$

Theorem 1. Let L be a geometric lattice with atoms E. Let M be the corresponding matroid on E, and r its rank function. Then

$$\chi(L;x) = (-1)^{r(M)} T(M; 1-x, 0).$$

(This was proved last time.)

Example 1. Let G be a simple graph with n vertices and c components so that its graphic matroid M(G) has rank n - c. Let L be the geometric lattice corresponding to M. The flats of L are the *(vertex-)induced subgraphs* of G: the subgraphs H such that if $e = xy \in E(G)$, and x, y are in the same component of H, then $e \in E(H)$. We have seen before that the chromatic polynomial of G is

$$\chi(G;k) = (-1)^{n-c} k^c T(G, 1-k, 0).$$

Combining this with Theorem 1, we see that

$$\chi(G;k) = k^c \,\chi(L;k)$$

so there is not too much inconsistency between these two uses of the symbol χ .

The characteristic polynomial is particularly important in studying hyperplane arrangements (coming soon).

Möbius Functions of Lattices

Theorem 2. The Möbius function of a geometric lattice alternates in sign.

Proof. Let L be a geometric lattice with atoms E. Let M be the corresponding matroid on E, and r its rank function. Substituting x = 0 in the definition of the characteristic polynomial and in the formula of Theorem 1 gives

$$\mu(L) = \chi(L; 0) = (-1)^{r(M)} T(M; 1, 0).$$

But $T(M; 1, 0) \ge 0$ for every matroid M, because $T(M; x, y) \in \mathbb{N}[x, y]$. Meanwhile, every interval $[\hat{0}, z] \subset L$ is a geometric lattice, so the sign of $\mu(\hat{0}, z)$ is the same as that of $(-1)^{r(z)}$ (or zero).

In fact, more is true: the Möbius function of any *semimodular* (not necessarily atomic) lattice alternates in sign. This can be proven algebraically using tools we're about to develop (Stanley, Prop. 3.10.1) or combinatorially, by intepreting $(-1)^{r(M)}\mu(L)$ as enumerating *R*-labellings of *L*; see Stanley, §§3.12–3.13.

It is easier to compute the Möbius function of a lattice than of an arbitrary poset. The main technical tool is the following ring.

Definition 2. Let L be a lattice. The **Möbius algebra** A(L) is the vector space of formal \mathbb{C} -linear combinations of elements of L, with multiplication given by the meet operation. (So $\hat{1}$ is the multiplicative unit of A(L).)

For example, if $L = \mathscr{B}_n$ then $A(L) \cong \mathbb{C}[x_1, \ldots, x_n]/(x_1^2 - x_1, \ldots, x_n^2 - x_n)$. In general, the elements of L form a vector space basis of A(L) consisting of *idempotents* (since $x \wedge x = x$ for all $x \in L$).

It looks like A(L) could have a complicated structure, but actually...

Proposition 3. $A(L) \cong \mathbb{C}^{|L|}$ as rings.

Proof. This is just an application of Möbius inversion. For $x \in L$, define

$$\varepsilon_x = \sum_{y \le x} \mu(y, x) y.$$

By Möbius inversion

 $x = \sum_{y \le x} \varepsilon_y.$ (1)

For $x \in L$, let \mathbb{C}_x be a copy of \mathbb{C} with unit 1_x , so we can identify $\mathbb{C}^{|L|}$ with $\prod_{x \in L} \mathbb{C}_x$.

Define a \mathbb{C} -linear map $\phi: A(L) \to \mathbb{C}^{|L|}$ by $\varepsilon_x \mapsto 1_x$. This is a vector space isomorphism, and by (1) we have

$$\phi(x)\phi(y) = \phi\left(\sum_{w \le x} \varepsilon_w\right)\phi\left(\sum_{z \le y} \varepsilon_z\right) = \left(\sum_{w \le x} 1_w\right)\left(\sum_{z \le y} 1_z\right) = \sum_{v \le x \land y} 1_v = \phi(x \land y)$$

\$\phi\$ is a ring isomorphism.

so in fact ϕ is a ring isomorphis

The reason the Möbius algebra is useful is that it lets us compute $\mu(x, y)$ more easily by summing over a cleverly chosen subset of [x, y], rather than the entire interval.

Proposition 4. Let L be a finite lattice with at least two elements. Then for every $a \in L \setminus \{\hat{1}\}$ we have

$$\sum_{x:x \land a = \hat{0}} \mu(x, \hat{1}) = 0$$

Proof. On the one hand

$$a\varepsilon_1 = \left(\sum_{b\leq a}\varepsilon_b\right)\varepsilon_1 = 0.$$

On the other hand

$$a\varepsilon_1 = a\left(\sum_{x\in L}\mu(x,\hat{1})x\right) = \sum_{x\in L}\mu(x,\hat{1})x \wedge a$$

Now take the coefficient of $\hat{0}$.

A corollary of Proposition 4 is the useful formula

(2)
$$\mu(L) = \mu_L(\hat{0}, \hat{1}) = -\sum_{\substack{x \neq \hat{0}: \\ x \land a = \hat{0}}} \mu(x, \hat{1})$$

Example 2. Let $a = \{[n-1], \{n\}\} \in \Pi_n$. Then the partitions x that show up in the sum of (2) are the atoms whose non-singleton block is $\{i, n\}$ for some $i \in [n-1]$. For each such x, the interval $[x, \hat{1}] \subset \Pi_n$ is isomorphic to Π_{n-1} , so (2) gives

$$\mu(\Pi_n) = -(n-1)\mu(\Pi_{n-1})$$

from which it follows by induction that

$$\mu(\Pi_n) = (-1)^{n-1}(n-1)!$$

(Wasn't that easy?)

Example 3. Let $L = L_n(q)$, and let $A = \{(v_1, \ldots, v_n) \in \mathbb{F}_q^n \mid v_n = 0\}$. This is a codimension-1 subspace in \mathbb{F}_q^n , hence a coatom in L. If X is a nonzero subspace such that $X \cap A = 0$, then X must be a line spanned by some vector (x_1, \ldots, x_n) with $x_n \neq 0$. We may as well assume $x_n = 1$ and choose x_1, \ldots, x_{n-1} arbitrarily, so there are q^{n-1} such lines. Moreover, the interval $[X, \hat{1}] \subset L$ is isomorphic to $L_{n-1}(q)$. Therefore

$$\mu(L_n(q)) = -q^{n-1}\mu(L_{n-1}(q))$$

and by induction

$$\mu(L_n(q)) = (-1)^n q^{\binom{n}{2}}.$$