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More on the Characteristic Polynomial

Definition 1. Let P be a finite graded poset with rank function r, and suppose that r(1̂) = n. The
characteristic polynomial of P is defined as

χ(P ; x) =
∑

z∈P

µ(0̂, z)xn−r(z).

Theorem 1. Let L be a geometric lattice with atoms E. Let M be the corresponding matroid on E, and r
its rank function. Then

χ(L; x) = (−1)r(M)T (M ; 1 − x, 0).

(This was proved last time.)

Example 1. Let G be a simple graph with n vertices and c components so that its graphic matroid M(G)
has rank n − c. Let L be the geometric lattice corresponding to M . The flats of L are the (vertex-)induced
subgraphs of G: the subgraphs H such that if e = xy ∈ E(G), and x, y are in the same component of H ,
then e ∈ E(H). We have seen before that the chromatic polynomial of G is

χ(G; k) = (−1)n−c kc T (G, 1 − k, 0).

Combining this with Theorem 1, we see that

χ(G; k) = kc χ(L; k)

so there is not too much inconsistency between these two uses of the symbol χ.

The characteristic polynomial is particularly important in studying hyperplane arrangements (coming soon).

Möbius Functions of Lattices

Theorem 2. The Möbius function of a geometric lattice alternates in sign.

Proof. Let L be a geometric lattice with atoms E. Let M be the corresponding matroid on E, and r its
rank function. Substituting x = 0 in the definition of the characteristic polynomial and in the formula of
Theorem 1 gives

µ(L) = χ(L; 0) = (−1)r(M)T (M ; 1, 0).

But T (M ; 1, 0) ≥ 0 for every matroid M , because T (M ; x, y) ∈ N[x, y]. Meanwhile, every interval [0̂, z] ⊂ L

is a geometric lattice, so the sign of µ(0̂, z) is the same as that of (−1)r(z) (or zero). �

In fact, more is true: the Möbius function of any semimodular (not necessarily atomic) lattice alternates
in sign. This can be proven algebraically using tools we’re about to develop (Stanley, Prop. 3.10.1) or
combinatorially, by intepreting (−1)r(M)µ(L) as enumerating R-labellings of L; see Stanley, §§3.12–3.13.

It is easier to compute the Möbius function of a lattice than of an arbitrary poset. The main technical tool
is the following ring.

Definition 2. Let L be a lattice. The Möbius algebra A(L) is the vector space of formal C-linear

combinations of elements of L, with multiplication given by the meet operation. (So 1̂ is the multiplicative
unit of A(L).)

For example, if L = Bn then A(L) ∼= C[x1, . . . , xn]/(x2
1 − x1, . . . , x

2
n − xn). In general, the elements of L

form a vector space basis of A(L) consisting of idempotents (since x ∧ x = x for all x ∈ L).

It looks like A(L) could have a complicated structure, but actually. . .



Proposition 3. A(L) ∼= C|L| as rings.

Proof. This is just an application of Möbius inversion. For x ∈ L, define

εx =
∑

y≤x

µ(y, x)y.

By Möbius inversion

(1) x =
∑

y≤x

εy.

For x ∈ L, let Cx be a copy of C with unit 1x, so we can identify C|L| with
∏

x∈L Cx.

Define a C-linear map φ : A(L) → C|L| by εx 7→ 1x. This is a vector space isomorphism, and by (1) we have

φ(x)φ(y) = φ





∑

w≤x

εw



φ





∑

z≤y

εz



 =





∑

w≤x

1w









∑

z≤y

1z



 =
∑

v≤x∧y

1v = φ(x ∧ y)

so in fact φ is a ring isomorphism. �

The reason the Möbius algebra is useful is that it lets us compute µ(x, y) more easily by summing over a
cleverly chosen subset of [x, y], rather than the entire interval.

Proposition 4. Let L be a finite lattice with at least two elements. Then for every a ∈ L \ {1̂} we have
∑

x:x∧a=0̂

µ(x, 1̂) = 0.

Proof. On the one hand

aε1 =





∑

b≤a

εb



 ε1̂ = 0.

On the other hand

aε1 = a

(

∑

x∈L

µ(x, 1̂)x

)

=
∑

x∈L

µ(x, 1̂)x ∧ a.

Now take the coefficient of 0̂. �

A corollary of Proposition 4 is the useful formula

(2) µ(L) = µL(0̂, 1̂) = −
∑

x6=0̂:

x∧a=0̂

µ(x, 1̂)

Example 2. Let a = {[n − 1], {n}} ∈ Πn. Then the partitions x that show up in the sum of (2) are the

atoms whose non-singleton block is {i, n} for some i ∈ [n − 1]. For each such x, the interval [x, 1̂] ⊂ Πn is
isomorphic to Πn−1, so (2) gives

µ(Πn) = −(n − 1)µ(Πn−1)

from which it follows by induction that

µ(Πn) = (−1)n−1(n − 1)!.

(Wasn’t that easy?)



Example 3. Let L = Ln(q), and let A = {(v1, . . . , vn) ∈ Fn
q | vn = 0}. This is a codimension-1 subspace in

Fn
q , hence a coatom in L. If X is a nonzero subspace such that X ∩A = 0, then X must be a line spanned by

some vector (x1, . . . , xn) with xn 6= 0. We may as well assume xn = 1 and choose x1, . . . , xn−1 arbitrarily,

so there are qn−1 such lines. Moreover, the interval [X, 1̂] ⊂ L is isomorphic to Ln−1(q). Therefore

µ(Ln(q)) = −qn−1µ(Ln−1(q))

and by induction

µ(Ln(q)) = (−1)nq(
n

2
).


