Wednesday 2/27

Möbius Inversion

Let P be a poset. Recall that we have defined the *Möbius function* of $P, \mu: P \times P \to \mathbb{Z}$, by

- (1) $\mu_P(x, x) = 1$ for all $x \in P$.
- (2) If $x \leq y$, then $\mu_P(x, y) = 0$.
- (3) If x < y, then $\mu_P(x, y) = -\sum_{z \in [x, y)} \mu_P(x, z)$.

We saw last time that if P is a product of n chains (a distributive lattice), then

$$\mu_P(\hat{0}, x) = \begin{cases} (-1)^a & \text{if } x \text{ is the join of } a \text{ atoms,} \\ 0 & \text{otherwise.} \end{cases}$$

In particular, $\mu_{\mathscr{B}_n}(\hat{0}, \hat{1}) = (-1)^n$.

Also, if $L = L_n(q)$ is the (modular) subspace lattice and $f(n,q) = \mu_L(\hat{0},\hat{1})$, then we saw that $f(n,q) = (-1)^n q^{\binom{n}{2}}$ for $n \leq 4$.

Why is the Möbius function useful?

- It is the inverse of ζ in the incidence algebra (check this!)
- It implies a more general version of inclusion-exclusion called *Möbius inversion*.
- It behaves nicely under poset operations such as product.
- It has geometric and topological applications. Even just the single number $\mu_P(\hat{0}, \hat{1})$ tells you a lot about a bounded poset P; it is analogous to the Euler characteristic of a topological space.

Theorem 1 (Möbius inversion formula). Let P be a poset in which every principal order ideal is finite, and let $f, g: P \to \mathbb{C}$. Then

(1a) $g(x) = \sum_{y \le x} f(y) \quad \forall x \in P \quad \Longleftrightarrow \quad f(x) = \sum_{y \le x} \mu(y, x) g(y) \quad \forall x \in P,$

(1b)
$$g(x) = \sum_{y \ge x} f(y) \quad \forall x \in P \quad \Longleftrightarrow \quad f(x) = \sum_{y \ge x} \mu(x, y) g(y) \quad \forall x \in P$$

Proof. "A trivial observation in linear algebra" —Stanley.

We regard the incidence algebra as acting \mathbb{C} -linearly on the vector space V of functions $f: P \to \mathbb{Z}$ by

$$(f \cdot \alpha)(x) = \sum_{y \le x} \alpha(y, x) f(y),$$
$$(\alpha \cdot f)(x) = \sum_{y \ge x} \alpha(x, y) f(y).$$

for $\alpha \in I(P)$. In terms of these actions, formulas (1a) and (1b) are respectively just the "trivial" observations

(2a)
$$g = f \cdot \zeta \iff f = g \cdot \mu,$$

(2b)
$$g = \zeta \cdot f \iff f = \mu \cdot g.$$

We just have to prove that these actions are indeed actions, i.e.,

$$[\alpha * \beta] \cdot f = \alpha \cdot [\beta \cdot f] \quad \text{and} \quad f \cdot [\alpha * \beta] = [f \cdot \alpha] \cdot \beta$$

Indeed,

$$(f \cdot [\alpha * \beta])(y) = \sum_{x \le y} (\alpha * \beta)(x, y) f(x)$$

= $\sum_{x \le y} \sum_{z \in [x, y]} \alpha(x, z) \beta(z, y) f(x)$
= $\sum_{z \le y} \left(\sum_{x \le z} \alpha(x, z) f(x) \right) \beta(z, y)$
= $\sum_{z \le y} (f \cdot \alpha)(z) \beta(z, y) = ((f \cdot \alpha) \cdot \beta)(y).$

and the other verification is analogous.

In the case of \mathscr{B}_n , the proposition says that

$$g(x) = \sum_{B \subseteq A} f(B) \quad \forall A \subseteq [n] \qquad \Longleftrightarrow \qquad f(x) = \sum_{B \subseteq A} (-1)^{|B \setminus A|} g(B) \qquad \forall A \subseteq [n]$$

which is just the inclusion-exclusion formula. So Möbius inversion can be thought of as a generalized form of inclusion-exclusion that applies to every poset.

Example 1. Here's an oldie-but-goodie: counting *derangements*, or permutations $\sigma \in \mathfrak{S}_n$ with no fixed points.

For $S \subset [n]$, let

$$f(S) = \{ \sigma \in \mathfrak{S}_n \mid \sigma(i) = i \text{ iff } i \in S \},\$$

$$g(S) = \{ \sigma \in \mathfrak{S}_n \mid \sigma(i) = i \text{ if } i \in S \}.$$

It's easy to count g(S) directly. If s = |S|, then a permutation fixing the elements of S is equivalent to a permutation on $[n] \setminus S$, so g(S) = (n - s)!.

It's hard to count f(S) directly. However,

$$g(S) = \sum_{R \supseteq S} f(R).$$

Rewritten in the incidence algebra $I(\mathscr{B}_n)$, this is just $g = \zeta \cdot f$. Thus $f = \mu \cdot g$, or in terms of the Möbius inversion formula (1b),

$$f(S) = \sum_{R \supseteq S} \mu(S, R) g(R) = \sum_{R \supseteq S} (-1)^{|R| - |S|} (n - |R|)! = \sum_{r=s}^{n} \binom{n}{r} (-1)^{r-s} (n-r)!$$

The number of derangements is then $f(\emptyset)$, which is given by the well-known formula

$$\sum_{r=0}^{n} \binom{n}{r} (-1)^{r} (n-r)!$$

Example 2. You can also use Möbius inversion to compute the Möbius function itself. In this example, we'll do this for the lattice $L_n(q)$. As a homework problem, you can use a similar method to compute the M obius function of the partition lattice.

Let $V = \mathbb{F}_q^n$, let $L = L_n(q)$, and let X be a \mathbb{F}_q -vector space of *cardinality* x (yes, cardinality, not dimension!) Define

 $g(W) \quad = \quad \text{number of } \mathbb{F}_q\text{-linear maps } \phi: V \to X \text{ such that } \ker \phi \supset W \quad = \quad x^{n-\dim W}.$

[Choose a basis B for W and extend it to a basis B' for V. Then ϕ must send every element of B to zero, but can send each of the $n - \dim W$ elements of $M' \setminus B$ to any of the x elements of X.] Let

 $f(W) \quad = \quad \text{number of } \mathbb{F}_q \text{-linear maps } \phi: V \to X \text{ such that } \ker \phi = W.$

Then $g(W) = \sum_{U \supset W} f(U)$, so by Möbius inversion

$$f(W) = \sum_{U: \ V \supseteq U \supseteq W} \mu_L(W, U) x^{n - \dim U}.$$

In particular, if we take W to be the zero subspace $0 = \hat{0}$, we obtain

$$f(\hat{0}) = \sum_{U \subseteq V} \mu_L(\hat{0}, U) x^{n - \dim U}$$

(3a)
$$= \sum_{U \in L} \mu_L(\hat{0}, U) x^{n-r(U)}$$
 (where $r = \text{rank function of } L$)

$$= \#\{\text{one-to-one linear maps } \phi: V \to X\}$$

(3b) =
$$(x-1)(x-q)(x-q^2)\cdots(x-q^{n-1})$$

[Choose an ordered basis $\{v_1, \ldots, v_n\}$ for V, and send each v_i to a vector in X not in the linear span of $\{\phi(v_1), \ldots, \phi(v_{i-1})\}$.]

This is just an identity of polynomials (in the ring $\mathbb{Q}[x]$, if you like). So we can equate the constant coefficients in (3a) and (3b), which gives

$$\mu_{L_n(q)}(\hat{0},\hat{1}) = (-1)^n q^{\binom{n}{2}}.$$

The Characteristic Polynomial

Definition 1. Let P be a finite graded poset with rank function r, and suppose that $r(\hat{1}) = n$. The *characteristic polynomial* of P is defined as

$$\chi(P;x) = \sum_{z \in P} \mu(\hat{0},z) x^{n-r(z)}.$$

This is an important invariant of a poset, particularly if it is a lattice.

• We have just seen that

$$\chi(L_n(q);x) = (x-1)(x-q)(x-q^2)\cdots(x-q^{n-1}).$$

• If P is a product of n chains, then the elements

$$\chi(P;x) = \sum_{k=0}^{n} (-1)^k \binom{n}{k} = (x-1)^n$$

• Π_n has a nice characteristic polynomial, which you will see soon.

The characteristic polynomial is a specialization of the Tutte polynomial:

Theorem 2. Let L be a geometric lattice with atoms E. Let M be the corresponding matroid on E, and r its rank function. Then

$$\chi(L;x) = (-1)^{r(M)} T(M; 1-x, 0).$$

Proof. We have

$$(-1)^{r(M)}T(M; 1-x, 0) = (-1)^{r(M)} \sum_{A \subseteq E} (-x)^{r(M)-r(A)} (-1)^{|A|-r(A)}$$
$$= \sum_{A \subseteq E} x^{r(M)-r(A)} (-1)^{|A|}$$
$$= \sum_{K \in L} \underbrace{\left(\sum_{\substack{A \subseteq E \\ \bar{A} = K}} (-1)^{|A|}\right)}_{f(K)} x^{r(M)-r(K)}$$

so it suffices to check that $f(K) = \mu_L(\hat{0}, K)$. To do this, we use Möbius inversion on L. For $K \in L$, let

$$g(K) \; = \; \sum_{\substack{A \subset E \\ \bar{A} \subseteq K}} (-1)^{|A|}.$$

So $g = f \cdot \zeta$ and $f = g \cdot \mu$ in I(L). Then $g(\hat{0}) = 1$, but if $J \neq \hat{0}$ then g(J) = 0, because the sum ranges over all subsets of the atoms lying below K, so by Möbius inversion (this time, (1a)) we have

$$f(K) = \sum_{J \le K} \mu(J, K) g(J) = \mu(\hat{0}, K)$$

as desired.