Wednesday 2/27

Möbius Inversion

Let P be a poset. Recall that we have defined the Möbius function of $P, \mu: P \times P \rightarrow \mathbb{Z}$, by
(1) $\mu_{P}(x, x)=1$ for all $x \in P$.
(2) If $x \not \leq y$, then $\mu_{P}(x, y)=0$.
(3) If $x<y$, then $\mu_{P}(x, y)=-\sum_{z \in[x, y)} \mu_{P}(x, z)$.

We saw last time that if P is a product of n chains (a distributive lattice), then

$$
\mu_{P}(\hat{0}, x)= \begin{cases}(-1)^{a} & \text { if } x \text { is the join of } a \text { atoms } \\ 0 & \text { otherwise }\end{cases}
$$

In particular, $\mu_{\mathscr{B}_{n}}(\hat{0}, \hat{1})=(-1)^{n}$.
Also, if $L=L_{n}(q)$ is the (modular) subspace lattice and $f(n, q)=\mu_{L}(\hat{0}, \hat{1})$, then we saw that $f(n, q)=$ $(-1)^{n} q^{\binom{n}{2}}$ for $n \leq 4$.

Why is the Möbius function useful?

- It is the inverse of ζ in the incidence algebra (check this!)
- It implies a more general version of inclusion-exclusion called Möbius inversion.
- It behaves nicely under poset operations such as product.
- It has geometric and topological applications. Even just the single number $\mu_{P}(\hat{0}, \hat{1})$ tells you a lot about a bounded poset P; it is analogous to the Euler characteristic of a topological space.

Theorem 1 (Möbius inversion formula). Let P be a poset in which every principal order ideal is finite, and let $f, g: P \rightarrow \mathbb{C}$. Then

$$
\begin{array}{llll}
g(x)=\sum_{y \leq x} f(y) & \forall x \in P & \Longleftrightarrow & f(x)=\sum_{y \leq x} \mu(y, x) g(y) \\
g(x)=\sum_{y \geq x} f(y) & \forall x \in P & \Longleftrightarrow x \in P \tag{1b}\\
\end{array}
$$

Proof. "A trivial observation in linear algebra" - Stanley.
We regard the incidence algebra as acting \mathbb{C}-linearly on the vector space V of functions $f: P \rightarrow \mathbb{Z}$ by

$$
\begin{aligned}
& (f \cdot \alpha)(x)=\sum_{y \leq x} \alpha(y, x) f(y) \\
& (\alpha \cdot f)(x)=\sum_{y \geq x} \alpha(x, y) f(y)
\end{aligned}
$$

for $\alpha \in I(P)$. In terms of these actions, formulas (1a) and (1b) are respectively just the "trivial" observations

$$
\begin{align*}
& g=f \cdot \zeta \quad \Longleftrightarrow \quad f=g \cdot \mu \tag{2a}\\
& g=\zeta \cdot f \quad \Longleftrightarrow \quad f=\mu \cdot g \tag{2b}
\end{align*}
$$

We just have to prove that these actions are indeed actions, i.e.,

$$
[\alpha * \beta] \cdot f=\alpha \cdot[\beta \cdot f] \quad \text { and } \quad f \cdot[\alpha * \beta]=[f \cdot \alpha] \cdot \beta .
$$

Indeed,

$$
\begin{aligned}
(f \cdot[\alpha * \beta])(y) & =\sum_{x \leq y}(\alpha * \beta)(x, y) f(x) \\
& =\sum_{x \leq y} \sum_{z \in[x, y]} \alpha(x, z) \beta(z, y) f(x) \\
& =\sum_{z \leq y}\left(\sum_{x \leq z} \alpha(x, z) f(x)\right) \beta(z, y) \\
& =\sum_{z \leq y}(f \cdot \alpha)(z) \beta(z, y)=((f \cdot \alpha) \cdot \beta)(y) .
\end{aligned}
$$

and the other verification is analogous.
In the case of \mathscr{B}_{n}, the proposition says that

$$
g(x)=\sum_{B \subseteq A} f(B) \quad \forall A \subseteq[n] \quad \Longleftrightarrow \quad f(x)=\sum_{B \subseteq A}(-1)^{|B \backslash A|} g(B) \quad \forall A \subseteq[n]
$$

which is just the inclusion-exclusion formula. So Möbius inversion can be thought of as a generalized form of inclusion-exclusion that applies to every poset.
Example 1. Here's an oldie-but-goodie: counting derangements, or permutations $\sigma \in \mathfrak{S}_{n}$ with no fixed points.

For $S \subset[n]$, let

$$
\begin{aligned}
& f(S)=\left\{\sigma \in \mathfrak{S}_{n} \mid \sigma(i)=i \text { iff } i \in S\right\}, \\
& g(S)=\left\{\sigma \in \mathfrak{S}_{n} \mid \sigma(i)=i \text { if } i \in S\right\} .
\end{aligned}
$$

It's easy to count $g(S)$ directly. If $s=|S|$, then a permutation fixing the elements of S is equivalent to a permutation on $[n] \backslash S$, so $g(S)=(n-s)!$.

It's hard to count $f(S)$ directly. However,

$$
g(S)=\sum_{R \supseteq S} f(R) .
$$

Rewritten in the incidence algebra $I\left(\mathscr{B}_{n}\right)$, this is just $g=\zeta \cdot f$. Thus $f=\mu \cdot g$, or in terms of the Möbius inversion formula (1b),

$$
f(S)=\sum_{R \supseteq S} \mu(S, R) g(R)=\sum_{R \supseteq S}(-1)^{|R|-|S|}(n-|R|)!=\sum_{r=s}^{n}\binom{n}{r}(-1)^{r-s}(n-r)!
$$

The number of derangements is then $f(\emptyset)$, which is given by the well-known formula

$$
\sum_{r=0}^{n}\binom{n}{r}(-1)^{r}(n-r)!
$$

Example 2. You can also use Möbius inversion to compute the Möbius function itself. In this example, we'll do this for the lattice $L_{n}(q)$. As a homework problem, you can use a similar method to compute the M obius function of the partition lattice.

Let $V=\mathbb{F}_{q}^{n}$, let $L=L_{n}(q)$, and let X be a \mathbb{F}_{q}-vector space of cardinality x (yes, cardinality, not dimension!) Define

$$
g(W)=\text { number of } \mathbb{F}_{q} \text {-linear maps } \phi: V \rightarrow X \text { such that } \operatorname{ker} \phi \supset W=x^{n-\operatorname{dim} W}
$$

[Choose a basis B for W and extend it to a basis B^{\prime} for V. Then ϕ must send every element of B to zero, but can send each of the $n-\operatorname{dim} W$ elements of $M^{\prime} \backslash B$ to any of the x elements of X.] Let

$$
f(W)=\text { number of } \mathbb{F}_{q} \text {-linear maps } \phi: V \rightarrow X \text { such that } \operatorname{ker} \phi=W
$$

Then $g(W)=\sum_{U \supset W} f(U)$, so by Möbius inversion

$$
f(W)=\sum_{U: V \supseteq U \supseteq W} \mu_{L}(W, U) x^{n-\operatorname{dim} U}
$$

In particular, if we take W to be the zero subspace $0=\hat{0}$, we obtain

$$
\begin{align*}
f(\hat{0}) & =\sum_{U \subseteq V} \mu_{L}(\hat{0}, U) x^{n-\operatorname{dim} U} \\
& =\sum_{U \in L} \mu_{L}(\hat{0}, U) x^{n-r(U)} \quad \quad \quad \text { (where } r=\operatorname{rank} \text { function of } L \text {) } \tag{3a}\\
& =\#\{\text { one-to-one linear maps } \phi: V \rightarrow X\} \\
& =(x-1)(x-q)\left(x-q^{2}\right) \cdots\left(x-q^{n-1}\right) \tag{3b}
\end{align*}
$$

[Choose an ordered basis $\left\{v_{1}, \ldots, v_{n}\right\}$ for V, and send each v_{i} to a vector in X not in the linear span of $\left\{\phi\left(v_{1}\right), \ldots, \phi\left(v_{i-1}\right)\right\}$.]

This is just an identity of polynomials (in the ring $\mathbb{Q}[x]$, if you like). So we can equate the constant coefficients in (3a) and (3b), which gives

$$
\mu_{L_{n}(q)}(\hat{0}, \hat{1})=(-1)^{n} q^{\binom{n}{2}}
$$

The Characteristic Polynomial

Definition 1. Let P be a finite graded poset with rank function r, and suppose that $r(\hat{1})=n$. The characteristic polynomial of P is defined as

$$
\chi(P ; x)=\sum_{z \in P} \mu(\hat{0}, z) x^{n-r(z)}
$$

This is an important invariant of a poset, particularly if it is a lattice.

- We have just seen that

$$
\chi\left(L_{n}(q) ; x\right)=(x-1)(x-q)\left(x-q^{2}\right) \cdots\left(x-q^{n-1}\right)
$$

- If P is a product of n chains, then the elements

$$
\chi(P ; x)=\sum_{k=0}^{n}(-1)^{k}\binom{n}{k}=(x-1)^{n} .
$$

- Π_{n} has a nice characteristic polynomial, which you will see soon.

The characteristic polynomial is a specialization of the Tutte polynomial:
Theorem 2. Let L be a geometric lattice with atoms E. Let M be the corresponding matroid on E, and r its rank function. Then

$$
\chi(L ; x)=(-1)^{r(M)} T(M ; 1-x, 0)
$$

Proof. We have

$$
\begin{aligned}
(-1)^{r(M)} T(M ; 1-x, 0) & =(-1)^{r(M)} \sum_{A \subseteq E}(-x)^{r(M)-r(A)}(-1)^{|A|-r(A)} \\
& =\sum_{A \subseteq E} x^{r(M)-r(A)}(-1)^{|A|} \\
& =\sum_{K \in L} \underbrace{\left(\sum_{\substack{A \subseteq E \\
A=K}}(-1)^{|A|}\right)}_{f(K)} x^{r(M)-r(K)}
\end{aligned}
$$

so it suffices to check that $f(K)=\mu_{L}(\hat{0}, K)$. To do this, we use Möbius inversion on L. For $K \in L$, let

$$
g(K)=\sum_{\substack{A \subseteq E \\ A \subseteq K}}(-1)^{|A|}
$$

So $g=f \cdot \zeta$ and $f=g \cdot \mu$ in $I(L)$. Then $g(\hat{0})=1$, but if $J \neq \hat{0}$ then $g(J)=0$, because the sum ranges over all subsets of the atoms lying below K, so by Möbius inversion (this time, (1a)) we have

$$
f(K)=\sum_{J \leq K} \mu(J, K) g(J)=\mu(\hat{0}, K)
$$

as desired.

