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Möbius Inversion

Let P be a poset. Recall that we have defined the Möbius function of P , µ : P × P → Z, by

(1) µP (x, x) = 1 for all x ∈ P .
(2) If x 6≤ y, then µP (x, y) = 0.
(3) If x < y, then µP (x, y) = −

∑

z∈[x,y) µP (x, z).

We saw last time that if P is a product of n chains (a distributive lattice), then

µP (0̂, x) =

{

(−1)a if x is the join of a atoms,

0 otherwise.

In particular, µBn
(0̂, 1̂) = (−1)n.

Also, if L = Ln(q) is the (modular) subspace lattice and f(n, q) = µL(0̂, 1̂), then we saw that f(n, q) =

(−1)nq(
n

2) for n ≤ 4.

Why is the Möbius function useful?

• It is the inverse of ζ in the incidence algebra (check this!)
• It implies a more general version of inclusion-exclusion called Möbius inversion.
• It behaves nicely under poset operations such as product.
• It has geometric and topological applications. Even just the single number µP (0̂, 1̂) tells you a lot

about a bounded poset P ; it is analogous to the Euler characteristic of a topological space.

Theorem 1 (Möbius inversion formula). Let P be a poset in which every principal order ideal is finite,

and let f, g : P → C. Then

g(x) =
∑

y≤x

f(y) ∀x ∈ P ⇐⇒ f(x) =
∑

y≤x

µ(y, x)g(y) ∀x ∈ P,(1a)

g(x) =
∑

y≥x

f(y) ∀x ∈ P ⇐⇒ f(x) =
∑

y≥x

µ(x, y)g(y) ∀x ∈ P.(1b)

Proof. “A trivial observation in linear algebra” —Stanley.

We regard the incidence algebra as acting C-linearly on the vector space V of functions f : P → Z by

(f · α)(x) =
∑

y≤x

α(y, x)f(y),

(α · f)(x) =
∑

y≥x

α(x, y)f(y).

for α ∈ I(P ). In terms of these actions, formulas (1a) and (1b) are respectively just the “trivial” observations

g = f · ζ ⇐⇒ f = g · µ,(2a)

g = ζ · f ⇐⇒ f = µ · g.(2b)



We just have to prove that these actions are indeed actions, i.e.,

[α ∗ β] · f = α · [β · f ] and f · [α ∗ β] = [f · α] · β.

Indeed,

(f · [α ∗ β])(y) =
∑

x≤y

(α ∗ β)(x, y)f(x)

=
∑

x≤y

∑

z∈[x,y]

α(x, z)β(z, y)f(x)

=
∑

z≤y




∑

x≤z

α(x, z)f(x)



 β(z, y)

=
∑

z≤y

(f · α)(z)β(z, y) = ((f · α) · β)(y).

and the other verification is analogous. �

In the case of Bn, the proposition says that

g(x) =
∑

B⊆A

f(B) ∀A ⊆ [n] ⇐⇒ f(x) =
∑

B⊆A

(−1)|B\A|g(B) ∀A ⊆ [n]

which is just the inclusion-exclusion formula. So Möbius inversion can be thought of as a generalized form
of inclusion-exclusion that applies to every poset.

Example 1. Here’s an oldie-but-goodie: counting derangements, or permutations σ ∈ Sn with no fixed
points.

For S ⊂ [n], let

f(S) = {σ ∈ Sn | σ(i) = i iff i ∈ S},

g(S) = {σ ∈ Sn | σ(i) = i if i ∈ S}.

It’s easy to count g(S) directly. If s = |S|, then a permutation fixing the elements of S is equivalent to a
permutation on [n] \ S, so g(S) = (n − s)!.

It’s hard to count f(S) directly. However,

g(S) =
∑

R⊇S

f(R).

Rewritten in the incidence algebra I(Bn), this is just g = ζ · f . Thus f = µ · g, or in terms of the Möbius
inversion formula (1b),

f(S) =
∑

R⊇S

µ(S, R)g(R) =
∑

R⊇S

(−1)|R|−|S|(n − |R|)! =

n∑

r=s

(
n

r

)

(−1)r−s(n − r)!

The number of derangements is then f(∅), which is given by the well-known formula

n∑

r=0

(
n

r

)

(−1)r(n − r)!



Example 2. You can also use Möbius inversion to compute the Möbius function itself. In this example,
we’ll do this for the lattice Ln(q). As a homework problem, you can use a similar method to compute the
M obius function of the partition lattice.

Let V = Fn
q , let L = Ln(q), and let X be a Fq-vector space of cardinality x (yes, cardinality, not dimension!)

Define

g(W ) = number of Fq-linear maps φ : V → X such that kerφ ⊃ W = xn−dim W .

[Choose a basis B for W and extend it to a basis B′ for V . Then φ must send every element of B to zero,
but can send each of the n − dim W elements of M ′ \ B to any of the x elements of X .] Let

f(W ) = number of Fq-linear maps φ : V → X such that kerφ = W .

Then g(W ) =
∑

U⊃W f(U), so by Möbius inversion

f(W ) =
∑

U : V ⊇U⊇W

µL(W, U)xn−dim U .

In particular, if we take W to be the zero subspace 0 = 0̂, we obtain

f(0̂) =
∑

U⊆V

µL(0̂, U)xn−dim U

=
∑

U∈L

µL(0̂, U)xn−r(U) (where r = rank function of L)(3a)

= #{one-to-one linear maps φ : V → X}

= (x − 1)(x − q)(x − q2) · · · (x − qn−1).(3b)

[Choose an ordered basis {v1, . . . , vn} for V , and send each vi to a vector in X not in the linear span of
{φ(v1), . . . , φ(vi−1)}.]

This is just an identity of polynomials (in the ring Q[x], if you like). So we can equate the constant coefficients
in (3a) and (3b), which gives

µLn(q)(0̂, 1̂) = (−1)nq(
n

2
).



The Characteristic Polynomial

Definition 1. Let P be a finite graded poset with rank function r, and suppose that r(1̂) = n. The
characteristic polynomial of P is defined as

χ(P ; x) =
∑

z∈P

µ(0̂, z)xn−r(z).

This is an important invariant of a poset, particularly if it is a lattice.

• We have just seen that

χ(Ln(q); x) = (x − 1)(x − q)(x − q2) · · · (x − qn−1).

• If P is a product of n chains, then the elements

χ(P ; x) =
n∑

k=0

(−1)k

(
n

k

)

= (x − 1)n.

• Πn has a nice characteristic polynomial, which you will see soon.

The characteristic polynomial is a specialization of the Tutte polynomial:

Theorem 2. Let L be a geometric lattice with atoms E. Let M be the corresponding matroid on E, and r

its rank function. Then

χ(L; x) = (−1)r(M)T (M ; 1 − x, 0).

Proof. We have

(−1)r(M)T (M ; 1 − x, 0) = (−1)r(M)
∑

A⊆E

(−x)r(M)−r(A)(−1)|A|−r(A)

=
∑

A⊆E

xr(M)−r(A)(−1)|A|

=
∑

K∈L







∑

A⊆E

Ā=K

(−1)|A|







︸ ︷︷ ︸

f(K)

xr(M)−r(K)

so it suffices to check that f(K) = µL(0̂, K). To do this, we use Möbius inversion on L. For K ∈ L, let

g(K) =
∑

A⊂E
Ā⊆K

(−1)|A|.

So g = f · ζ and f = g · µ in I(L). Then g(0̂) = 1, but if J 6= 0̂ then g(J) = 0, because the sum ranges over
all subsets of the atoms lying below K, so by Möbius inversion (this time, (1a)) we have

f(K) =
∑

J≤K

µ(J, K)g(J) = µ(0̂, K)

as desired. �


