Monday 2/25

The Incidence Algebra

Many enumerative properties of posets P can be expressed in terms of a ring called its incidence algebra.
Definition 1. Let P be a locally finite poset and let $\operatorname{Int}(P)$ denote the set of intervals of P. The incidence algebra $I(P)$ is the set of functions $f: \operatorname{Int}(P) \rightarrow \mathbb{C}$. I'll abbreviate $f([x, y])$ by $f(x, y)$. (For convenience, we set $f(x, y)=0$ if $x \not \leq y$.) This is a \mathbb{C}-vector space with pointwise addition, subtraction and scalar multiplication. It can be made into an associative algebra by the convolution product:

$$
(f * g)(x, y)=\sum_{z \in[x, y]} f(x, z) g(z, y) .
$$

Proposition 1. Convolution is associative.

Proof.

$$
\begin{aligned}
{[(f * g) * h](x, y) } & =\sum_{z \in[x, y]}(f * g)(x, z) \cdot h(z, y) \\
& =\sum_{z \in[x, y]}\left(\sum_{w \in[x, z]} f(x, w) g(w, z)\right) h(z, y) \\
& =\sum_{w \in[x, y]} f(x, w)\left(\sum_{z \in[w, y]} g(w, z) h(z, y)\right) \\
& =\sum_{w \in[x, y]} f(x, w) \cdot(g * h)(w, y) \\
& =[f *(g * h)](x, y) .
\end{aligned}
$$

Proposition 2. $f \in I(P)$ is invertible if and only if $f(x, x) \neq 0$ for all x.

Proof. If f is invertible with inverse g, then $(f * g)(x, x)=f(x, x) g(x, x)$ for all x, so in particular $f(x, x) \neq 0$.
OTOH, if $f(x, x) \neq 0$, then we can define a left inverse g inductively: $g(x, x)=1 / f(x, x)$, and for $x<y$, we want to have

$$
\begin{aligned}
(g * f)(x, y)=0 & =\sum_{x \leq z \leq y} g(x, z) f(z, y) \\
& =g(x, y) f(x, x)+\sum_{x \leq z<y} f(x, z) g(z, y)
\end{aligned}
$$

so define

$$
g(x, y)=-\frac{1}{f(x, x)} \sum_{x \leq z y} g(x, z) f(z, y)
$$

The identity element of $I(P)$ is the Kronecker delta function:

$$
\delta(x, y)= \begin{cases}1 & \text { if } x=y \\ 0 & \text { if } x \neq y\end{cases}
$$

The zeta function is defined as

$$
\zeta(x, y)= \begin{cases}1 & \text { if } x \leq y \\ 0 & \text { if } x \not \leq y\end{cases}
$$

and the eta function is

$$
\eta(x, y)= \begin{cases}1 & \text { if } x<y \\ 0 & \text { if } x \nless y\end{cases}
$$

i.e., $\eta=\zeta-\delta$.

Principle: Counting various structures in P corresponds to computation in $I(P)$.
For example, look at powers of ζ :

$$
\begin{aligned}
\zeta^{2}(x, y) & =\sum_{z \in[x, y]} \zeta(x, z) \zeta(z, y)=\sum_{z \in[x, y]} 1 \\
& =|\{z: x \leq z \leq y\}| \\
\zeta^{3}(x, y) & =\sum_{z \in[x, y]} \sum_{w \in[z, y]} \zeta(x, z) \zeta(z, w) \zeta(w, y)=\sum_{x \leq z \leq w \leq y} 1 \\
& =|\{z, w: x \leq z \leq w \leq y\}| \\
\zeta^{n}(x, y) & =\left|\left\{x_{1}, \ldots, x_{n-1}: x \leq x_{1} \leq x_{2} \leq \cdots \leq x_{n-1} \leq y\right\}\right| \\
& =\text { number of } n \text {-multichains between } x \text { and } y
\end{aligned}
$$

Similarly

$$
\begin{aligned}
\eta^{n}(x, y) & =\left|\left\{x_{1}, \ldots, x_{n-1}: x<x_{1}<x_{2}<\cdots<x_{n-1}<y\right\}\right| \\
& =\text { number of } n \text {-chains between } x \text { and } y
\end{aligned}
$$

- If P is chain-finite then $\eta^{n}=0$ for $n \gg 0$.

The Möbius Function

Let P be a poset. We are going to define a function $\mu=\mu_{P}$ on pairs of comparable elements of P (equivalently, on intervals of P), called the Möbius function of P. The definition is recursive:
(1) $\mu_{P}(x, x)=1$ for all $x \in P$.
(2) If $x \not \leq y$, then $\mu_{P}(x, y)=0$.
(3) If $x<y$, then $\mu_{P}(x, y)=-\sum_{z: x \leq z<y} \mu_{P}(x, z)$.

This is just the construction of Proposition 2 applied to $f=\zeta$. That is, $\mu=\zeta^{-1}$: the Möbius function is the unique function in $I(P)$ satisfying the equations

$$
\sum_{z: x \leq z \leq y} \mu_{P}(x, z)=\delta(x, y)
$$

Example 1. In these diagrams of the posets M_{5} and N_{5}, the red numbers indicate $\mu_{P}(\hat{0}, x)$.

Example 2. In the diagram of the following poset P, the red numbers indicate $\mu_{P}(\hat{0}, x)$.

Example 3. Let \mathscr{B}_{n} be the Boolean algebra of rank n and let $A \in \mathscr{B}_{n}$. I claim that $\mu(\hat{0}, A)=(-1)^{|A|}$.
To see this, induct on $|A|$. The case $|A|=0$ is clear. For $|A|>0$, we have

$$
\begin{aligned}
\mu(\hat{0}, A)=-\sum_{B \subsetneq A}(-1)^{|B|} & =-\sum_{k=0}^{|A|-1}(-1)^{k}\binom{|A|}{k} \quad(\text { by induction }) \\
& =(-1)^{|A|}-\sum_{k=0}^{|A|}(-1)^{k}\binom{|A|}{k} \\
& =(-1)^{|A|}-(1-1)^{|A|}=(-1)^{|A|}
\end{aligned}
$$

More generally, if $B \subseteq A$, then $\mu(B, A)=(-1)^{|B \backslash A|}$, because every interval of \mathscr{B}_{n} is a Boolean algebra.
Even more generally, suppose that P is a product of n chains of lengths a_{1}, \ldots, a_{n}. That is,

$$
P=\left\{x=\left(x_{1}, \ldots, x_{n}\right) \mid 0 \leq x_{i} \leq a_{i} \text { for all } i \in[n]\right\}
$$

ordered by $x \leq y$ iff $x_{i} \leq y_{i}$ for all i. Then

$$
\mu(\hat{0}, x)= \begin{cases}0 & \text { if } x_{i} \geq 2 \text { for at least one } i \\ (-1)^{s} & \text { if } x \text { consists of } s 1 \text { 's and } n-s 0 \text { 's. }\end{cases}
$$

(The Boolean algebra is the special case that $a_{i}=2$ for every i.) This conforms to the definition of Möbius function that you saw in Math 724. This formula is sufficient to calculate $\mu(y, x)$ for all $x, y \in P$, because every interval $[y, \hat{1}] \subset P$ is also a product of chains.

Example 4. We will calculate the Möbius function of the subspace lattice $L=L_{n}(q)$. Notice that if $X \subset Y \subset \mathbb{F}_{q}^{n}$ with $\operatorname{dim} Y-\operatorname{dim} X=m$, then $[X, Y] \cong L_{m}(q)$. Therefore, it suffices to calculate

$$
f(q, n):=\mu\left(0, \mathbb{F}_{q}^{n}\right)
$$

Let $g_{q}(k, n)$ be the number of k-dimensional subspaces of \mathbb{F}_{q}^{n}.
Clearly $f(q, 1)=-1$.
If $n=2$, then $g_{q}(1,2)=\frac{q^{2}-1}{q-1}=q+1$, so $f(q, 2)=-1+(q+1)=q$.
If $n=3$, then $g_{q}(1,3)=g_{q}(2,3)=\frac{q^{3}-1}{q-1}=q^{2}+q+1$, so

$$
\begin{aligned}
f(q, 3)=\mu(\hat{0}, \hat{1}) & =-\sum_{V \subsetneq \mathbb{F}_{q}^{3}} \mu(\hat{0}, V) \\
& =-\sum_{k=0}^{2} g_{q}(k, 3) f(q, k) \\
& =-1-\left(q^{2}+q+1\right)(-1)-\left(q^{2}+q+1\right)(q)=-q^{3} .
\end{aligned}
$$

For $n=4$:

$$
\begin{aligned}
f(q, 4) & =-\sum_{k=0}^{3} g_{q}(k, 4) f(q, k) \\
& =-1-\frac{q^{4}-1}{q-1}(-1)-\frac{\left(q^{4}-1\right)\left(q^{3}-1\right)}{\left(q^{2}-1\right)(q-1)}(q)-\frac{q^{4}-1}{q-1}\left(-q^{3}\right)=q^{6} .
\end{aligned}
$$

It is starting to look like

$$
f(q, n)=(-1)^{n} q^{\binom{n}{2}}
$$

in general, and indeed this is the case. We could prove this by induction now, but there is a slicker proof coming soon.

Why is the Möbius function useful?

- It is the inverse of ζ in the incidence algebra (check this!)
- It generalizes inclusion-exclusion.
- It behaves nicely under poset operations such as product.
- It has geometric and topological applications. Even just the single number $\mu_{P}(\hat{0}, \hat{1})$ tells you a lot about a bounded poset P; it is analogous to the Euler characteristic of a topological space.

