Monday 2/25

The Incidence Algebra

Many enumerative properties of posets P can be expressed in terms of a ring called its **incidence algebra**.

Definition 1. Let P be a locally finite poset and let Int(P) denote the set of intervals of P. The **incidence algebra** I(P) is the set of functions $f : Int(P) \to \mathbb{C}$. I'll abbreviate f([x, y]) by f(x, y). (For convenience, we set f(x, y) = 0 if $x \leq y$.) This is a \mathbb{C} -vector space with pointwise addition, subtraction and scalar multiplication. It can be made into an associative algebra by the *convolution product*:

$$(f*g)(x,y) = \sum_{z \in [x,y]} f(x,z)g(z,y).$$

Proposition 1. Convolution is associative.

Proof.

$$\begin{split} [(f*g)*h](x,y) &= \sum_{z \in [x,y]} (f*g)(x,z) \cdot h(z,y) \\ &= \sum_{z \in [x,y]} \left(\sum_{w \in [x,z]} f(x,w)g(w,z) \right) h(z,y) \\ &= \sum_{w \in [x,y]} f(x,w) \left(\sum_{z \in [w,y]} g(w,z)h(z,y) \right) \\ &= \sum_{w \in [x,y]} f(x,w) \cdot (g*h)(w,y) \\ &= [f*(g*h)](x,y). \end{split}$$

Proposition 2. $f \in I(P)$ is invertible if and only if $f(x, x) \neq 0$ for all x.

Proof. If f is invertible with inverse g, then (f * g)(x, x) = f(x, x)g(x, x) for all x, so in particular $f(x, x) \neq 0$. OTOH, if $f(x, x) \neq 0$, then we can define a left inverse g inductively: g(x, x) = 1/f(x, x), and for x < y, we want to have

$$\begin{split} (g*f)(x,y) &= 0 = \sum_{x \leq z \leq y} g(x,z) f(z,y) \\ &= g(x,y) f(x,x) + \sum_{x \leq z < y} f(x,z) g(z,y) \end{split}$$

so define

$$g(x,y) = -\frac{1}{f(x,x)} \sum_{x \le zy} g(x,z) f(z,y).$$

The identity element of I(P) is the Kronecker delta function:

$$\delta(x,y) = \begin{cases} 1 & \text{if } x = y, \\ 0 & \text{if } x \neq y. \end{cases}$$

The *zeta function* is defined as

$$\zeta(x,y) = \begin{cases} 1 & \text{if } x \leq y, \\ 0 & \text{if } x \not\leq y \end{cases}$$

and the *eta function* is

$$\eta(x, y) = \begin{cases} 1 & \text{if } x < y, \\ 0 & \text{if } x \not< y, \end{cases}$$

i.e., $\eta = \zeta - \delta$.

Principle: Counting various structures in P corresponds to computation in I(P).

For example, look at powers of ζ :

$$\begin{aligned} \zeta^2(x,y) &= \sum_{z \in [x,y]} \zeta(x,z)\zeta(z,y) = \sum_{z \in [x,y]} 1 \\ &= \left| \{z : x \le z \le y\} \right| \\ \zeta^3(x,y) &= \sum_{z \in [x,y]} \sum_{w \in [z,y]} \zeta(x,z)\zeta(z,w)\zeta(w,y) = \sum_{x \le z \le w \le y} 1 \\ &= \left| \{z,w : x \le z \le w \le y\} \right| \\ \zeta^n(x,y) &= \left| \{x_1,\dots,x_{n-1} : x \le x_1 \le x_2 \le \dots \le x_{n-1} \le y\} \right| \\ &= \text{number of } n\text{-multichains between } x \text{ and } y \end{aligned}$$

Similarly

$$\eta^n(x,y) = \left| \{x_1, \dots, x_{n-1} : x < x_1 < x_2 < \dots < x_{n-1} < y\} \right|$$

= number of *n*-chains between *x* and *y*

• If P is chain-finite then $\eta^n = 0$ for $n \gg 0$.

The Möbius Function

Let P be a poset. We are going to define a function $\mu = \mu_P$ on pairs of comparable elements of P (equivalently, on intervals of P), called the *Möbius function* of P. The definition is recursive:

- (1) $\mu_P(x, x) = 1$ for all $x \in P$.
- (2) If $x \leq y$, then $\mu_P(x, y) = 0$. (3) If x < y, then $\mu_P(x, y) = -\sum_{z: x \leq z < y} \mu_P(x, z)$.

This is just the construction of Proposition 2 applied to $f = \zeta$. That is, $\mu = \zeta^{-1}$: the Möbius function is the unique function in I(P) satisfying the equations

$$\sum_{x \le z \le y} \mu_P(x, z) = \delta(x, y)$$

Example 1. In these diagrams of the posets M_5 and N_5 , the red numbers indicate $\mu_P(\hat{0}, x)$.

z

Example 2. In the diagram of the following poset P, the red numbers indicate $\mu_P(\hat{0}, x)$.

Example 3. Let \mathscr{B}_n be the Boolean algebra of rank n and let $A \in \mathscr{B}_n$. I claim that $\mu(\hat{0}, A) = (-1)^{|A|}$. To see this, induct on |A|. The case |A| = 0 is clear. For |A| > 0, we have

$$\mu(\hat{0}, A) = -\sum_{B \subsetneq A} (-1)^{|B|} = -\sum_{k=0}^{|A|-1} (-1)^k \binom{|A|}{k} \quad \text{(by induction)}$$
$$= (-1)^{|A|} - \sum_{k=0}^{|A|} (-1)^k \binom{|A|}{k}$$
$$= (-1)^{|A|} - (1-1)^{|A|} = (-1)^{|A|}.$$

More generally, if $B \subseteq A$, then $\mu(B, A) = (-1)^{|B \setminus A|}$, because every interval of \mathscr{B}_n is a Boolean algebra.

Even more generally, suppose that P is a product of n chains of lengths a_1, \ldots, a_n . That is,

 $P = \{ x = (x_1, \dots, x_n) \mid 0 \le x_i \le a_i \text{ for all } i \in [n] \},\$

ordered by $x \leq y$ iff $x_i \leq y_i$ for all *i*. Then

$$\mu(\hat{0}, x) = \begin{cases} 0 & \text{if } x_i \ge 2 \text{ for at least one } i; \\ (-1)^s & \text{if } x \text{ consists of } s \text{ 1's and } n-s \text{ 0's}. \end{cases}$$

(The Boolean algebra is the special case that $a_i = 2$ for every *i*.) This conforms to the definition of Möbius function that you saw in Math 724. This formula is sufficient to calculate $\mu(y, x)$ for all $x, y \in P$, because every interval $[y, \hat{1}] \subset P$ is also a product of chains.

Example 4. We will calculate the Möbius function of the subspace lattice $L = L_n(q)$. Notice that if $X \subset Y \subset \mathbb{F}_q^n$ with dim $Y - \dim X = m$, then $[X, Y] \cong L_m(q)$. Therefore, it suffices to calculate

$$f(q,n) := \mu(0, \mathbb{F}_q^n).$$

Let $g_q(k,n)$ be the number of k-dimensional subspaces of \mathbb{F}_q^n .

Clearly
$$f(q, 1) = \boxed{-1}$$
.
If $n = 2$, then $g_q(1, 2) = \frac{q^2 - 1}{q - 1} = q + 1$, so $f(q, 2) = -1 + (q + 1) = \boxed{q}$.
If $n = 3$, then $g_q(1, 3) = g_q(2, 3) = \frac{q^3 - 1}{q - 1} = q^2 + q + 1$, so
 $f(q, 3) = \mu(\hat{0}, \hat{1}) = -\sum_{V \subsetneq \mathbb{F}_q^3} \mu(\hat{0}, V)$
 $= -\sum_{k=0}^2 g_q(k, 3) f(q, k)$
 $= -1 - (q^2 + q + 1)(-1) - (q^2 + q + 1)(q) = \boxed{-q^3}$.

For n = 4:

$$\begin{split} f(q,4) &= -\sum_{k=0}^{3} g_q(k,4) f(q,k) \\ &= -1 - \frac{q^4 - 1}{q - 1} (-1) - \frac{(q^4 - 1)(q^3 - 1)}{(q^2 - 1)(q - 1)} (q) - \frac{q^4 - 1}{q - 1} (-q^3) \ = \ \boxed{q^6}. \end{split}$$

It is starting to look like

$$f(q,n) = (-1)^n q^{\binom{n}{2}}$$

in general, and indeed this is the case. We could prove this by induction now, but there is a slicker proof coming soon.

Why is the Möbius function useful?

- It is the inverse of ζ in the incidence algebra (check this!)
- It generalizes inclusion-exclusion.
- It behaves nicely under poset operations such as product.
- It has geometric and topological applications. Even just the single number $\mu_P(\hat{0}, \hat{1})$ tells you a lot about a bounded poset P; it is analogous to the Euler characteristic of a topological space.