
Monday 2/25

The Incidence Algebra

Many enumerative properties of posets P can be expressed in terms of a ring called its incidence algebra.

Definition 1. Let P be a locally finite poset and let Int(P ) denote the set of intervals of P . The
incidence algebra I(P ) is the set of functions f : Int(P ) → C. I’ll abbreviate f([x, y]) by f(x, y). (For
convenience, we set f(x, y) = 0 if x 6≤ y.) This is a C-vector space with pointwise addition, subtraction and
scalar multiplication. It can be made into an associative algebra by the convolution product :

(f ∗ g)(x, y) =
∑

z∈[x,y]

f(x, z)g(z, y).

Proposition 1. Convolution is associative.

Proof.

[(f ∗ g) ∗ h](x, y) =
∑

z∈[x,y]

(f ∗ g)(x, z) · h(z, y)

=
∑

z∈[x,y]





∑

w∈[x,z]

f(x, w)g(w, z)



 h(z, y)

=
∑

w∈[x,y]

f(x, w)





∑

z∈[w,y]

g(w, z)h(z, y)





=
∑

w∈[x,y]

f(x, w) · (g ∗ h)(w, y)

= [f ∗ (g ∗ h)](x, y). �

Proposition 2. f ∈ I(P ) is invertible if and only if f(x, x) 6= 0 for all x.

Proof. If f is invertible with inverse g, then (f ∗g)(x, x) = f(x, x)g(x, x) for all x, so in particular f(x, x) 6= 0.

OTOH, if f(x, x) 6= 0, then we can define a left inverse g inductively: g(x, x) = 1/f(x, x), and for x < y, we
want to have

(g ∗ f)(x, y) = 0 =
∑

x≤z≤y

g(x, z)f(z, y)

= g(x, y)f(x, x) +
∑

x≤z<y

f(x, z)g(z, y)

so define

g(x, y) = −
1

f(x, x)

∑

x≤zy

g(x, z)f(z, y).

�

The identity element of I(P ) is the Kronecker delta function:

δ(x, y) =

{

1 if x = y,

0 if x 6= y.

The zeta function is defined as

ζ(x, y) =

{

1 if x ≤ y,

0 if x 6≤ y



and the eta function is

η(x, y) =

{

1 if x < y,

0 if x 6< y,

i.e., η = ζ − δ.

Principle: Counting various structures in P corresponds to computation in I(P ).

For example, look at powers of ζ:

ζ2(x, y) =
∑

z∈[x,y]

ζ(x, z)ζ(z, y) =
∑

z∈[x,y]

1

=
∣

∣

∣{z : x ≤ z ≤ y}
∣

∣

∣

ζ3(x, y) =
∑

z∈[x,y]

∑

w∈[z,y]

ζ(x, z)ζ(z, w)ζ(w, y) =
∑

x≤z≤w≤y

1

=
∣

∣

∣{z, w : x ≤ z ≤ w ≤ y}
∣

∣

∣

ζn(x, y) =
∣

∣

∣{x1, . . . , xn−1 : x ≤ x1 ≤ x2 ≤ · · · ≤ xn−1 ≤ y}
∣

∣

∣

= number of n-multichains between x and y

Similarly

ηn(x, y) =
∣

∣

∣{x1, . . . , xn−1 : x < x1 < x2 < · · · < xn−1 < y}
∣

∣

∣

= number of n-chains between x and y

• If P is chain-finite then ηn = 0 for n � 0.

The Möbius Function

Let P be a poset. We are going to define a function µ = µP on pairs of comparable elements of P (equivalently,
on intervals of P ), called the Möbius function of P . The definition is recursive:

(1) µP (x, x) = 1 for all x ∈ P .
(2) If x 6≤ y, then µP (x, y) = 0.
(3) If x < y, then µP (x, y) = −

∑

z: x≤z<y µP (x, z).

This is just the construction of Proposition 2 applied to f = ζ. That is, µ = ζ−1: the Möbius function is
the unique function in I(P ) satisfying the equations

∑

z: x≤z≤y

µP (x, z) = δ(x, y).

Example 1. In these diagrams of the posets M5 and N5, the red numbers indicate µP (0̂, x).
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Example 2. In the diagram of the following poset P , the red numbers indicate µP (0̂, x).
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Example 3. Let Bn be the Boolean algebra of rank n and let A ∈ Bn. I claim that µ(0̂, A) = (−1)|A|.

To see this, induct on |A|. The case |A| = 0 is clear. For |A| > 0, we have

µ(0̂, A) = −
∑

B(A

(−1)|B| = −

|A|−1
∑

k=0

(−1)k

(

|A|

k

)

(by induction)

= (−1)|A| −

|A|
∑

k=0

(−1)k

(

|A|

k

)

= (−1)|A| − (1 − 1)|A| = (−1)|A|.

More generally, if B ⊆ A, then µ(B, A) = (−1)|B\A|, because every interval of Bn is a Boolean algebra.

Even more generally, suppose that P is a product of n chains of lengths a1, . . . , an. That is,

P = {x = (x1, . . . , xn) | 0 ≤ xi ≤ ai for all i ∈ [n]},

ordered by x ≤ y iff xi ≤ yi for all i. Then

µ(0̂, x) =

{

0 if xi ≥ 2 for at least one i;

(−1)s if x consists of s 1’s and n − s 0’s.

(The Boolean algebra is the special case that ai = 2 for every i.) This conforms to the definition of Möbius
function that you saw in Math 724. This formula is sufficient to calculate µ(y, x) for all x, y ∈ P , because

every interval [y, 1̂] ⊂ P is also a product of chains.



Example 4. We will calculate the Möbius function of the subspace lattice L = Ln(q). Notice that if
X ⊂ Y ⊂ Fn

q with dim Y − dim X = m, then [X, Y ] ∼= Lm(q). Therefore, it suffices to calculate

f(q, n) := µ(0, Fn
q ).

Let gq(k, n) be the number of k-dimensional subspaces of F
n
q .

Clearly f(q, 1) = −1.

If n = 2, then gq(1, 2) =
q2 − 1

q − 1
= q + 1, so f(q, 2) = −1 + (q + 1) = q.

If n = 3, then gq(1, 3) = gq(2, 3) =
q3 − 1

q − 1
= q2 + q + 1, so

f(q, 3) = µ(0̂, 1̂) = −
∑

V (F3
q

µ(0̂, V )

= −

2
∑

k=0

gq(k, 3)f(q, k)

= −1 − (q2 + q + 1)(−1) − (q2 + q + 1)(q) = −q3.

For n = 4:

f(q, 4) = −
3

∑

k=0

gq(k, 4)f(q, k)

= −1 −
q4 − 1

q − 1
(−1) −

(q4 − 1)(q3 − 1)

(q2 − 1)(q − 1)
(q) −

q4 − 1

q − 1
(−q3) = q6.

It is starting to look like

f(q, n) = (−1)nq(
n

2)

in general, and indeed this is the case. We could prove this by induction now, but there is a slicker proof
coming soon.

Why is the Möbius function useful?

• It is the inverse of ζ in the incidence algebra (check this!)
• It generalizes inclusion-exclusion.
• It behaves nicely under poset operations such as product.
• It has geometric and topological applications. Even just the single number µP (0̂, 1̂) tells you a lot

about a bounded poset P ; it is analogous to the Euler characteristic of a topological space.


