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The Tutte Polynomial

Definition 1. Let M be a matroid with ground set E and let e € E. The Tutte polynomial T'(M) =
T(M; x,y) is computed recursively as follows:

(T1) If E =0, then T(M) = 1.
(T2a) If e € Eis a loop, then T(M) =y -T(M/e).
(T2b) If e € E is a coloop, then T(M) =z - T(M —e).
(T3) If e € E is neither a loop nor a coloop, then T'(M) =T(M —e) + T (M/e).

We prove that T' (M) is well-defined by giving a closed formula for it, the comnk—nullitgﬂ generating function.
Theorem 1. Let r be the rank function of the matroid M. Then
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Proof. Let T(M) = T(M; z,y) denote the generating function on the right-hand side of (). We will prove
by induction on n = |E| that T'(M) obeys the recurrence of Definition [ for every ground set element e,
hence equals T'(M). Let v and r” denote the rank functions on M — e and M /e respectively.

For (T1), if E = (), then () gives T(M) =1 = T(M).

For (T2a), let e be a loop. Then 7/(A) = 7(A) = r(AUe) for every A C E \ e, so
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For (T2b), let e be a coloop. Then r"(A) = r(A) =r(AUe) — 1 for every A C E\ ¢, so
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* The quantity r(E) — r(A) is the corank of A; it is the minimum number of elements one needs to add to A to obtain a
spanning set of M. Meanwhile, |A| — r(A) is the nullity of A: the minimum number of elements one needs to remove from A
to obtain an acyclic set.
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Finally, suppose that e is neither a loop nor a coloop. Then
r'(A)=7r(A) and r"(A)=r(AUe) -1
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which is (T3).

As a consequence, we can obtain several invariants of a matroid easily from its Tutte polynomial.

Corollary 2. For every matroid M, we have

= number of bases of M ;

= |El;

= number of independent sets of M ;
= number of spanning sets of M.

Proof. We've already proved (1) and (2), but they also follow from the corank-nullity generating function.
Plugging in x = 2,y = 2 will change every summand to 1. Plugging in x = 1 and y = 1 will change every
summand to 0, except for those sets A that have corank and nullity both equal to 0 — that is, those sets
that are both spanning and independent. The verifications of (3) and (4) are analogous. t

A little more generally, we can use the Tutte polynomial to enumerate independent and spanning sets by
their cardinality:

(2) > M =gMT/g+1,1);
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(3) > M =gMT,1/g+1).

ACE spanning

Another easy fact is that T'(M) is multiplicative on direct sums:
T (M ® My) = T(M)T(Ms).



The Chromatic Polynomial

Let G = (V, E) be a graph. A k-coloring of G is a function f : V — [k]; the coloring is proper if f(v) # f(w)
whenever verices v and w are adjacent. Let 2% (G) denote the set of proper colorings of G.

The function k — |25 (G)| is called the chromatic function x(Gj; k).
e If GG has a loop, then its endpoints automatically have the same color, so x(G; k) = 0.

o If G = K, then all vertices must have different colors. There are k choices for f(1), k — 1 choices
for f(2), etc., so x(Kp; k) =k(k—1)(k—2)---(k—n+1).

e At the other extreme, let G = K, the graph with n vertices and no edges. Then x(K,; k) = k™.
e If T, is a tree with n vertices, then pick any vertex as the root; this imposes a partial order on the
vertices in which the root is 1 and each non-root vertex v is covered by exactly one other vertex p(v)

(its “parent”). There are k choices for the color of the root, and once we know f(p(v)) there are
k — 1 choices for f(v). Therefore x(Ty; k) = k(k —1)"~1.

e X(G+ H; k) = x(G; k)x(H; k), where 4+ denotes disjoint union of graphs.
Theorem 3. For every graph G we have
X(G; k) = (=)D T(G, 1-k,0)

where n(G) is the number of vertices of G.



