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The Tutte Polynomial

Definition 1. Let M be a matroid with ground set E and let e ∈ E. The Tutte polynomial T (M) =
T (M ; x, y) is computed recursively as follows:

(T1) If E = ∅, then T (M) = 1.
(T2a) If e ∈ E is a loop, then T (M) = y · T (M/e).
(T2b) If e ∈ E is a coloop, then T (M) = x · T (M − e).
(T3) If e ∈ E is neither a loop nor a coloop, then T (M) = T (M − e) + T (M/e).

We prove that T (M) is well-defined by giving a closed formula for it, the corank-nullity∗ generating function.

Theorem 1. Let r be the rank function of the matroid M . Then

(1) T (M ; x, y) =
∑

A⊆E

(x − 1)r(E)−r(A)(y − 1)|A|−r(A).

Proof. Let T̃ (M) = T̃ (M ; x, y) denote the generating function on the right-hand side of (1). We will prove

by induction on n = |E| that T̃ (M) obeys the recurrence of Definition 1 for every ground set element e,
hence equals T (M). Let r′ and r′′ denote the rank functions on M − e and M/e respectively.

For (T1), if E = ∅, then (1) gives T̃ (M) = 1 = T (M).

For (T2a), let e be a loop. Then r′(A) = r(A) = r(A ∪ e) for every A ⊂ E \ e, so

T̃ (M) =
∑

A⊆E

(x − 1)r(E)−r(A)(y − 1)|A|−r(A)

=
∑

A⊆E

e6∈A

(x − 1)r(E)−r(A)(y − 1)|A|−r(A) +
∑

B⊆E

e∈B

(x − 1)r(E)−r(B)(y − 1)|A|−r(B)

=
∑

A⊆E\e

(x − 1)r
′(E\e)−r

′(A)(y − 1)|A|−r
′(A) +

∑

A⊆E\e

(x − 1)r
′(E\e)−r

′(A)(y − 1)|A|+1−r
′(A)

= (1 + (y − 1))
∑

A⊆E\e

(x − 1)r
′(E\e)−r

′(A)(y − 1)|A|−r
′(A)

= yT̃ (M − e).

For (T2b), let e be a coloop. Then r′′(A) = r(A) = r(A ∪ e) − 1 for every A ⊂ E \ e, so

T̃ (M) =
∑

A⊆E

(x − 1)r(E)−r(A)(y − 1)|A|−r(A)

=
∑

e6∈A⊆E

(x − 1)r(E)−r(A)(y − 1)|A|−r(A) +
∑

e∈B⊆E

(x − 1)r(E)−r(B)(y − 1)|A|−r(B)

=
∑

A⊆E\e

(x − 1)(r
′′(E\e)+1)−r

′′(A)(y − 1)|A|−r
′′(A)

+
∑

A⊆E\e

(x − 1)(r
′′(E\e)+1)−(r′′(A)+1)(y − 1)|A|+1−(r′′(A)+1)

∗ The quantity r(E) − r(A) is the corank of A; it is the minimum number of elements one needs to add to A to obtain a
spanning set of M . Meanwhile, |A| − r(A) is the nullity of A: the minimum number of elements one needs to remove from A

to obtain an acyclic set.



=
∑

A⊆E\e

(x − 1)r
′′(E\e)+1−r

′′(A)(y − 1)|A|−r
′′(A) +

∑

A⊆E\e

(x − 1)r
′′(E\e)−r

′′(A)(y − 1)|A|−r
′′(A)

= ((x − 1) + 1)
∑

A⊆E\e

(x − 1)r
′′(E\e)−r

′′(A)(y − 1)|A|−r
′′(A)

= xT̃ (M/e).

Finally, suppose that e is neither a loop nor a coloop. Then

r′(A) = r(A) and r′′(A) = r(A ∪ e) − 1

so

T̃ (M) =
∑

A⊆E

(x − 1)r(E)−r(A)(y − 1)|A|−r(A)

=
∑

A⊆E\e

[

(x − 1)r(E)−r(A)(y − 1)|A|−r(A)
]

+
[

(x − 1)r(E)−r(A∪e)(y − 1)|A∪e|−r(A∪e)
]

=
∑

A⊆E\e

[

(x − 1)r
′(E\e)−r

′(A)(y − 1)|A|−r
′(A)

]

+
[

(x − 1)(r
′′(E)+1)−(r′′(A)+1)(y − 1)|A|+1−(r′′(A)−1)

]

=
∑

A⊆E\e

(x − 1)r
′(E\e)−r

′(A)(y − 1)|A|−r
′(A) +

∑

A⊆E\e

(x − 1)r
′′(E\e)−r

′′(A)(y − 1)|A|−r
′′(A)

= T̃ (M − e) + T̃ (M/e) �

which is (T3).

As a consequence, we can obtain several invariants of a matroid easily from its Tutte polynomial.

Corollary 2. For every matroid M , we have

(1) T (M ; 1, 1) = number of bases of M ;

(2) T (M ; 2, 2) = |E|;
(3) T (M ; 2, 1) = number of independent sets of M ;

(4) T (M ; 1, 2) = number of spanning sets of M .

Proof. We’ve already proved (1) and (2), but they also follow from the corank-nullity generating function.
Plugging in x = 2, y = 2 will change every summand to 1. Plugging in x = 1 and y = 1 will change every
summand to 0, except for those sets A that have corank and nullity both equal to 0 — that is, those sets
that are both spanning and independent. The verifications of (3) and (4) are analogous. �

A little more generally, we can use the Tutte polynomial to enumerate independent and spanning sets by
their cardinality:

∑

A⊆E independent

q|A| = qr(M)T (1/q + 1, 1);(2)

∑

A⊆E spanning

q|A| = qr(M)T (1, 1/q + 1).(3)

Another easy fact is that T (M) is multiplicative on direct sums:

T (M1 ⊕ M2) = T (M1)T (M2).



The Chromatic Polynomial

Let G = (V, E) be a graph. A k-coloring of G is a function f : V → [k]; the coloring is proper if f(v) 6= f(w)
whenever verices v and w are adjacent. Let Xk(G) denote the set of proper colorings of G.

The function k 7→ |Xk(G)| is called the chromatic function χ(G; k).

• If G has a loop, then its endpoints automatically have the same color, so χ(G; k) = 0.

• If G = Kn, then all vertices must have different colors. There are k choices for f(1), k − 1 choices
for f(2), etc., so χ(Kn; k) = k(k − 1)(k − 2) · · · (k − n + 1).

• At the other extreme, let G = Kn, the graph with n vertices and no edges. Then χ(Kn; k) = kn.

• If Tn is a tree with n vertices, then pick any vertex as the root; this imposes a partial order on the
vertices in which the root is 1̂ and each non-root vertex v is covered by exactly one other vertex p(v)
(its “parent”). There are k choices for the color of the root, and once we know f(p(v)) there are
k − 1 choices for f(v). Therefore χ(Tn; k) = k(k − 1)n−1.

• χ(G + H ; k) = χ(G; k)χ(H ; k), where + denotes disjoint union of graphs.

Theorem 3. For every graph G we have

χ(G; k) = (−1)n(G)−1k · T (G, 1 − k, 0)

where n(G) is the number of vertices of G.


