Wednesday 2/20

The Tutte Polynomial

Definition 1. Let M be a matroid with ground set E and let $e \in E$. The Tutte polynomial $T(M)=$ $T(M ; x, y)$ is computed recursively as follows:
(T1) If $E=\emptyset$, then $T(M)=1$.
(T2a) If $e \in E$ is a loop, then $T(M)=y \cdot T(M / e)$.
(T2b) If $e \in E$ is a coloop, then $T(M)=x \cdot T(M-e)$.
(T3) If $e \in E$ is neither a loop nor a coloop, then $T(M)=T(M-e)+T(M / e)$.

We prove that $T(M)$ is well-defined by giving a closed formula for it, the corank-nullit $\boldsymbol{W}^{\boldsymbol{W}}$ generating function.
Theorem 1. Let r be the rank function of the matroid M. Then

$$
\begin{equation*}
T(M ; x, y)=\sum_{A \subseteq E}(x-1)^{r(E)-r(A)}(y-1)^{|A|-r(A)} \tag{1}
\end{equation*}
$$

Proof. Let $\tilde{T}(M)=\tilde{T}(M ; x, y)$ denote the generating function on the right-hand side of (11). We will prove by induction on $n=|E|$ that $\tilde{T}(M)$ obeys the recurrence of Definition 1 for every ground set element e, hence equals $T(M)$. Let r^{\prime} and $r^{\prime \prime}$ denote the rank functions on $M-e$ and M / e respectively.

For (T1), if $E=\emptyset$, then (11) gives $\tilde{T}(M)=1=T(M)$.
For (T2a), let e be a loop. Then $r^{\prime}(A)=r(A)=r(A \cup e)$ for every $A \subset E \backslash e$, so

$$
\begin{aligned}
\tilde{T}(M) & =\sum_{A \subseteq E}(x-1)^{r(E)-r(A)}(y-1)^{|A|-r(A)} \\
& =\sum_{\substack{A \subseteq E \\
e \notin A}}(x-1)^{r(E)-r(A)}(y-1)^{|A|-r(A)}+\sum_{\substack{B \subseteq E \\
e \in B}}(x-1)^{r(E)-r(B)}(y-1)^{|A|-r(B)} \\
& =\sum_{A \subseteq E \backslash e}(x-1)^{r^{\prime}(E \backslash e)-r^{\prime}(A)}(y-1)^{|A|-r^{\prime}(A)}+\sum_{A \subseteq E \backslash e}(x-1)^{r^{\prime}(E \backslash e)-r^{\prime}(A)}(y-1)^{|A|+1-r^{\prime}(A)} \\
& =(1+(y-1)) \sum_{A \subseteq E \backslash e}(x-1)^{r^{\prime}(E \backslash e)-r^{\prime}(A)}(y-1)^{|A|-r^{\prime}(A)} \\
& =y \tilde{T}(M-e) .
\end{aligned}
$$

For (T2b), let e be a coloop. Then $r^{\prime \prime}(A)=r(A)=r(A \cup e)-1$ for every $A \subset E \backslash e$, so

$$
\begin{aligned}
\tilde{T}(M)= & \sum_{A \subseteq E}(x-1)^{r(E)-r(A)}(y-1)^{|A|-r(A)} \\
= & \sum_{e \notin A \subseteq E}(x-1)^{r(E)-r(A)}(y-1)^{|A|-r(A)}+\sum_{e \in B \subseteq E}(x-1)^{r(E)-r(B)}(y-1)^{|A|-r(B)} \\
= & \sum_{A \subseteq E \backslash e}(x-1)^{\left(r^{\prime \prime}(E \backslash e)+1\right)-r^{\prime \prime}(A)}(y-1)^{|A|-r^{\prime \prime}(A)} \\
& \quad+\sum_{A \subseteq E \backslash e}(x-1)^{\left(r^{\prime \prime}(E \backslash e)+1\right)-\left(r^{\prime \prime}(A)+1\right)}(y-1)^{|A|+1-\left(r^{\prime \prime}(A)+1\right)}
\end{aligned}
$$

[^0]\[

$$
\begin{aligned}
& =\sum_{A \subseteq E \backslash e}(x-1)^{r^{\prime \prime}(E \backslash e)+1-r^{\prime \prime}(A)}(y-1)^{|A|-r^{\prime \prime}(A)}+\sum_{A \subseteq E \backslash e}(x-1)^{r^{\prime \prime}(E \backslash e)-r^{\prime \prime}(A)}(y-1)^{|A|-r^{\prime \prime}(A)} \\
& =((x-1)+1) \sum_{A \subseteq E \backslash e}(x-1)^{r^{\prime \prime}(E \backslash e)-r^{\prime \prime}(A)}(y-1)^{|A|-r^{\prime \prime}(A)} \\
& =x \tilde{T}(M / e)
\end{aligned}
$$
\]

Finally, suppose that e is neither a loop nor a coloop. Then

$$
\begin{aligned}
& \qquad r^{\prime}(A)=r(A) \quad \text { and } \quad r^{\prime \prime}(A)=r(A \cup e)-1 \\
& \text { so } \\
& \qquad \begin{aligned}
\tilde{T}(M) & =\sum_{A \subseteq E}(x-1)^{r(E)-r(A)}(y-1)^{|A|-r(A)} \\
= & \sum_{A \subseteq E \backslash e}\left[(x-1)^{r(E)-r(A)}(y-1)^{|A|-r(A)}\right]+\left[(x-1)^{r(E)-r(A \cup e)}(y-1)^{|A \cup e|-r(A \cup e)}\right] \\
= & \sum_{A \subseteq E \backslash e}\left[(x-1)^{r^{\prime}(E \backslash e)-r^{\prime}(A)}(y-1)^{|A|-r^{\prime}(A)}\right]+\left[(x-1)^{\left(r^{\prime \prime}(E)+1\right)-\left(r^{\prime \prime}(A)+1\right)}(y-1)^{|A|+1-\left(r^{\prime \prime}(A)-1\right)}\right] \\
= & \sum_{A \subseteq E \backslash e}(x-1)^{r^{\prime}(E \backslash e)-r^{\prime}(A)}(y-1)^{|A|-r^{\prime}(A)}+\sum_{A \subseteq E \backslash e}(x-1)^{r^{\prime \prime}(E \backslash e)-r^{\prime \prime}(A)}(y-1)^{|A|-r^{\prime \prime}(A)} \\
= & \tilde{T}(M-e)+\tilde{T}(M / e)
\end{aligned}
\end{aligned}
$$

which is (T3).

As a consequence, we can obtain several invariants of a matroid easily from its Tutte polynomial.
Corollary 2. For every matroid M, we have
(1) $T(M ; 1,1)=$ number of bases of M;
(2) $T(M ; 2,2)=|E|$;
(3) $T(M ; 2,1)=$ number of independent sets of M;
(4) $T(M ; 1,2)=$ number of spanning sets of M.

Proof. We've already proved (1) and (2), but they also follow from the corank-nullity generating function. Plugging in $x=2, y=2$ will change every summand to 1 . Plugging in $x=1$ and $y=1$ will change every summand to 0 , except for those sets A that have corank and nullity both equal to 0 - that is, those sets that are both spanning and independent. The verifications of (3) and (4) are analogous.

A little more generally, we can use the Tutte polynomial to enumerate independent and spanning sets by their cardinality:

$$
\begin{align*}
\sum_{A \subseteq E \text { independent }} q^{|A|} & =q^{r(M)} T(1 / q+1,1) \tag{2}\\
\sum_{A \subseteq E \text { spanning }} q^{|A|} & =q^{r(M)} T(1,1 / q+1) \tag{3}
\end{align*}
$$

Another easy fact is that $T(M)$ is multiplicative on direct sums:

$$
T\left(M_{1} \oplus M_{2}\right)=T\left(M_{1}\right) T\left(M_{2}\right)
$$

The Chromatic Polynomial

Let $G=(V, E)$ be a graph. A k-coloring of G is a function $f: V \rightarrow[k]$; the coloring is proper if $f(v) \neq f(w)$ whenever verices v and w are adjacent. Let $\mathscr{X}_{k}(G)$ denote the set of proper colorings of G.

The function $k \mapsto\left|\mathscr{X}_{k}(G)\right|$ is called the chromatic function $\chi(G ; k)$.

- If G has a loop, then its endpoints automatically have the same color, so $\chi(G ; k)=0$.
- If $G=K_{n}$, then all vertices must have different colors. There are k choices for $f(1), k-1$ choices for $f(2)$, etc., so $\chi\left(K_{n} ; k\right)=k(k-1)(k-2) \cdots(k-n+1)$.
- At the other extreme, let $G=\overline{K_{n}}$, the graph with n vertices and no edges. Then $\chi\left(\overline{K_{n}} ; k\right)=k^{n}$.
- If T_{n} is a tree with n vertices, then pick any vertex as the root; this imposes a partial order on the vertices in which the root is $\hat{1}$ and each non-root vertex v is covered by exactly one other vertex $p(v)$ (its "parent"). There are k choices for the color of the root, and once we know $f(p(v)$) there are $k-1$ choices for $f(v)$. Therefore $\chi\left(T_{n} ; k\right)=k(k-1)^{n-1}$.
- $\chi(G+H ; k)=\chi(G ; k) \chi(H ; k)$, where + denotes disjoint union of graphs.

Theorem 3. For every graph G we have

$$
\chi(G ; k)=(-1)^{n(G)-1} k \cdot T(G, 1-k, 0)
$$

where $n(G)$ is the number of vertices of G.

[^0]: * The quantity $r(E)-r(A)$ is the corank of A; it is the minimum number of elements one needs to add to A to obtain a spanning set of M. Meanwhile, $|A|-r(A)$ is the nullity of A : the minimum number of elements one needs to remove from A to obtain an acyclic set.

