
Monday 2/18

The Tutte Polynomial

Let M be a matroid with ground set E. Recall that we can delete or contract an element e ∈ E to obtain
respectively the matroids M − e amd M/e on E \ {e}, whose basis systems are

B(M − e) = {B | B ∈ B(M), e 6∈ B},

B(M/e) = {B \ e | B ∈ B(M), e ∈ B}.

Thus deletion is defined whenever e is not a coloop, and contraction is defined whenever e is not a loop.

Definition 1. The Tutte polynomial of M is compute recursively as

(1) T (M) = T (M ; x, y) =



















1 if E = ∅,

x · T (M/e) if e is a coloop,

y · T (M − e) if e is a loop,

T (M − e) + T (M/e) otherwise,

for any e ∈ E.

If M = M(G) is a graphic matroid, we may write T (G) instead of T (M(G)).

This is more of an algorithm than a definition, and at this point, it is not even clear that T (M) is well-
defined, because the formula seems to depend on the order in which we pick elements to delete and contract.
However, a miracle occurs: it doesn’t! We will soon prove this by giving a closed formula for T (M) that
does not depend on any such choice.

In the case that M is a uniform matroid, then it is clear at this point that T (M) is well-defined by (1),
because, up to isomorphism, M − e and M/e are independent of the choices of e ∈ E.

Example 1. Suppose that M ∼= Un(n), that is, every element of E is a coloop. By induction, T (M)(x, y) =
xn. Dually, if M ∼= U0(n) (i.e., every element of E is a loop), then T (M)(x, y) = yn.

Example 2. Let M ∼= U1(2) (the graphic matroid of the “digon”, two vertices joined by two parallel edges).
Let e ∈ E; then

T (M) = T (M − e) + T (M/e)

= T (U1(1)) + T (U0(1)) = x + y.

Example 3. Let M ∼= U2(3) (the graphic matroid of K3, as well as the matroid associated with the geometric
lattice Π3

∼= M5). Applying (1) for any e ∈ E gives

T (U2(3)) = T (U2(2)) + T (U1(2)) = x2 + x + y.

On the other hand,
T (U1(3)) = T (U1(2)) + T (U0(2)) = x + y + y2.

In general, we can represent a calculation of T (M) by a binary tree in which moving down corresponds to
deleting or contracting:



M−e−f M/e−f M/e/fM−e/f

M

M−e M/e

......

Example 4. Here is a non-uniform example. Let G be the graph below.

a

b

c

d

e

One possibility is to recurse on edge a (or equivalently on b, c, or d). When we delete a, the edge d becomes
a coloop, and contracting it produces a copy of K3. Therefore

T (G − a) = x(x2 + x + y)

by Example 3. Next, apply the recurrence to the edge b in G/a. The graph G/a−b has a coloop c, contracting
which produces a digon. Meanwhile, M(G/a/b) ∼= U1(3). Therefore

T (G/a − b) = x(x + y) and T (G/a/b) = x + y + y2.

Putting it all together, we get

T (G) = T (G − a) + T (G/a)

= T (G − a) + T (G/a − b) + T (G/a/b)

= x(x2 + x + y) + x(x + y) + (x + y + y2)

= x3 + 2x2 + 2xy + x + y + y2.

x(x  +x+y)2

x+y+y2x(x+y)

On the other hand, we could have recursed first on e, getting

T (G) = T (G − e) + T (G/e)

= T (G − e − c) + T (G − e/c) + T (G/e− c) + T (G/e/c)

= x3 + (x2 + x + y) + x(x + y) + y(x + y)

= x3 + 2x2 + 2xy + x + y + y2.



x  +x+y2x3 x(x+y) y(x+y)

We can actually see the usefulness of T (M) even before proving that it is well-defined!

Proposition 1. T (M ; 1, 1) equals the number of bases of M .

Proof. Let b(M) = T (M ; 1, 1). Then (1) gives

b(M) =



















1 if E = ∅,

bG/e if e is a coloop

bG−e if e is a loop

b(M − e) + b(M/e) otherwise

which is identical to the recurrence for |B(M)| that we observed on Friday 2/15. �

Many other invariants of M can be found in this way by making appropriate substitutions for the indeter-
minates x, y in T (M). In particular, if we let c(M) = T (M ; 2, 2), then

c(M) =



















1 if E = ∅,

2cG/e if e is a coloop

2cG−e if e is a loop

c(M − e) + c(M/e) otherwise

so c(M) = 2|E|. This suggests that T (M) ought to have a closed formula as a sum over subsets A ⊆ E, with
each summand becoming 1 upon setting x = 1 and y = 1—for example, with each summand a product of
powers of x − 1 and y − 1. In fact, this is the case.

Theorem 2. Let r be the rank function of the matroid M . Then

(2) T (M ; x, y) =
∑

A⊆E

(x − 1)r(E)−r(A)(y − 1)|A|−r(A).

The quantity r(E) − r(A) is the corank of A; it is the minimum number of elements one needs to add to A
to obtain a spanning set of M . Meanwhile, |A| − r(A) is the nullity of A: the minimum number of elements
one needs to remove from A to obtain an acyclic set. Accordingly, (2) is referred to as the the corank-nullity

generating function.

(As an exercise, work out T (G; x, y) for the graph G of Example 4; you shoudl get the same answer as
above.)

Proof of Theorem 2. Let T̃ (M) = T̃ (M ; x, y) denote the generating function on the right-hand side of (2).

We will prove by induction on n = |E| that T̃ (M) obeys the recurrence (1) for every ground set element e,
hence equals T (M). Let r′ and r′′ denote the rank functions on M − e and M/e respectively.



For the base case, if E = ∅, then (2) gives T̃ (M) = 1 = T (M).

If e is a loop, then r′(A) = r(A) = r(A ∪ e) for every A ⊂ E \ e, so

T̃ (M) =
∑

A⊆E

(x − 1)r(E)−r(A)(y − 1)|A|−r(A)

=
∑

A⊆E
e6∈A

(x − 1)r(E)−r(A)(y − 1)|A|−r(A) +
∑

B⊆E
e∈B

(x − 1)r(E)−r(B)(y − 1)|A|−r(B)

=
∑

A⊆E\e

(x − 1)r′(E\e)−r′(A)(y − 1)|A|−r′(A) +
∑

A⊆E\e

(x − 1)r′(E\e)−r′(A)(y − 1)|A|+1−r′(A)

= (1 + (y − 1))
∑

A⊆E\e

(x − 1)r′(E\e)−r′(A)(y − 1)|A|−r′(A)

= yT̃ (M − e).

If e is a coloop, then r′′(A) = r(A) = r(A ∪ e) − 1 for every A ⊂ E \ e, so

T̃ (M) =
∑

A⊆E

(x − 1)r(E)−r(A)(y − 1)|A|−r(A)

=
∑

e6∈A⊆E

(x − 1)r(E)−r(A)(y − 1)|A|−r(A) +
∑

e∈B⊆E

(x − 1)r(E)−r(B)(y − 1)|A|−r(B)

=
∑

A⊆E\e

(x − 1)(r
′′(E\e)+1)−r′′(A)(y − 1)|A|−r′′(A)

+
∑

A⊆E\e

(x − 1)(r
′′(E\e)+1)−(r′′(A)+1)(y − 1)|A|+1−(r′′(A)+1)

=
∑

A⊆E\e

(x − 1)r′′(E\e)+1−r′′(A)(y − 1)|A|−r′′(A) +
∑

A⊆E\e

(x − 1)r′′(E\e)−r′′(A)(y − 1)|A|−r′′(A)

= ((x − 1) + 1)
∑

A⊆E\e

(x − 1)r′′(E\e)−r′′(A)(y − 1)|A|−r′′(A)

= xT̃ (M/e).

Finally, suppose that e is neither a loop nor a coloop. Then

r′(A) = r(A) and r′′(A) = r(A ∪ e) − 1.

Therefore,

T̃ (M) =
∑

A⊆E

(x − 1)r(E)−r(A)(y − 1)|A|−r(A)

=
∑

A⊆E\e

[

(x − 1)r(E)−r(A)(y − 1)|A|−r(A)
]

+
[

(x − 1)r(E)−r(A∪e)(y − 1)|A∪e|−r(A∪e)
]

=
∑

A⊆E\e

[

(x − 1)r′(E\e)−r′(A)(y − 1)|A|−r′(A)
]

+
[

(x − 1)(r
′′(E)+1)−(r′′(A)+1)(y − 1)|A|+1−(r′′(A)−1)

]

=
∑

A⊆E\e

(x − 1)r′(E\e)−r′(A)(y − 1)|A|−r′(A) + +
∑

A⊆E\e

(x − 1)r′′(E\e)−r′′(A)(y − 1)|A|−r′′(A)

= T̃ (M − e) + T̃ (M/e). �


