Monday 2/18

The Tutte Polynomial

Let M be a matroid with ground set E. Recall that we can delete or contract an element e € E to obtain
respectively the matroids M — e amd M/e on E \ {e}, whose basis systems are

B(M —c)={B| BeBM), ¢ B},
PB(M/e)={B\e|Be BM), ec B}.
Thus deletion is defined whenever e is not a coloop, and contraction is defined whenever e is not a loop.

Definition 1. The Tutte polynomial of M is compute recursively as

1 if =0,
T(M e )
(1) T(M)=T(M; z,y) = z-T(M/e) 1 eTsaCOOOp,
y-T(M —e) if e is a loop,
T(M—e)+T(M/e) otherwise,
for any e € E.

If M = M(G) is a graphic matroid, we may write T'(G) instead of T (M (G)).

This is more of an algorithm than a definition, and at this point, it is not even clear that T (M) is well-
defined, because the formula seems to depend on the order in which we pick elements to delete and contract.
However, a miracle occurs: it doesn’t! We will soon prove this by giving a closed formula for T'(M) that
does not depend on any such choice.

In the case that M is a uniform matroid, then it is clear at this point that T'(M) is well-defined by (),
because, up to isomorphism, M — e and M /e are independent of the choices of e € E.

Example 1. Suppose that M = U, (n), that is, every element of E is a coloop. By induction, T'(M)(z,y) =
a™. Dually, if M = Uy(n) (i.e., every element of E is a loop), then T(M)(z,y) = y™.

Example 2. Let M = U;(2) (the graphic matroid of the “digon”, two vertices joined by two parallel edges).
Let e € E; then
T(M)=T(M —e)+T(M/e)
=T(U1(1)) + T(Up(1)) = z+y.
Example 3. Let M 2 Uy(3) (the graphic matroid of K3, as well as the matroid associated with the geometric
lattice II3 = Mj5). Applying (@) for any e € E gives
T(W:3) = TW>(2)) + T(U:(2))

x2+m+y.

On the other hand,
T(U:(3)) = T(U1(2)) +T(Uo(2)) = = +y+y>

In general, we can represent a calculation of T'(M) by a binary tree in which moving down corresponds to
deleting or contracting:
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Example 4. Here is a non-uniform example. Let G be the graph below.
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One possibility is to recurse on edge a (or equivalently on b, ¢, or d). When we delete a, the edge d becomes
a coloop, and contracting it produces a copy of K3. Therefore

T(G—a) = z(2®>+z+vy)

by ExampleBl Next, apply the recurrence to the edge b in G/a. The graph G/a—b has a coloop ¢, contracting
which produces a digon. Meanwhile, M (G/a/b) = Uy(3). Therefore

T(G/a—b) = x(z+y) and T(G/a/b) = x+y+y>
Putting it all together, we get
T(G) = T(G—a)+T(G/a)
= T(G—-a)+T(G/a—-0b)+T(G/a/b)
= 2@ +a+y) + 2l@+y) + (@+y+y?)
= 23422 4 ey +x +y+ o2
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On the other hand, we could have recursed first on e, getting
T(G) = T(G—e)+T(G/e)
=TG—-e—-c)+T(G—-e/e)+T(G/e—c)+T(G/e/c)
=2 + @ +z+y) + 2@@+y) + yl@+y)
= 23422 4 2zy+x +y+ o2
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We can actually see the usefulness of T'(M) even before proving that it is well-defined!

Proposition 1. T(M; 1,1) equals the number of bases of M.

Proof. Let (M) =T(M; 1,1). Then () gives

1 ifE =0,
b(M) = bG /e %f e %s a coloop
bg—e if e is a loop
b(M —e)+b(M/e) otherwise
which is identical to the recurrence for |%(M)| that we observed on Friday 2/15. O

Many other invariants of M can be found in this way by making appropriate substitutions for the indeter-
minates x,y in T (M). In particular, if we let ¢(M) = T(M; 2,2), then

1 if E=0,

o(M) = 2¢cq/e %f e ?s a coloop

2cG—e if e is a loop

c(M —e)+c(M/e) otherwise
so ¢(M) = 2!Fl. This suggests that T(M) ought to have a closed formula as a sum over subsets A C F, with
each summand becoming 1 upon setting x = 1 and y = 1—for example, with each summand a product of
powers of z — 1 and y — 1. In fact, this is the case.

Theorem 2. Let r be the rank function of the matroid M. Then

(2) T(M; z,y) = Z (v — 1)T(E)—T(A)(y _ 1)|A|—7‘(A).
ACE

The quantity r(E) — r(A) is the corank of A; it is the minimum number of elements one needs to add to A
to obtain a spanning set of M. Meanwhile, |A| — r(A) is the nullity of A: the minimum number of elements
one needs to remove from A to obtain an acyclic set. Accordingly, () is referred to as the the corank-nullity
generating function.

(As an exercise, work out T(G; z,y) for the graph G of Example B} you shoudl get the same answer as
above.)

Proof of Theorem . Let T(M) = T(M; , y) denote the generating function on the right-hand side of (&).
We will prove by induction on n = |E| that T(M) obeys the recurrence ([ll) for every ground set element e,
hence equals T'(M). Let 7’ and r” denote the rank functions on M — e and M /e respectively.



For the base case, if E =), then (@) gives T(M) =1 = T(M).

If e is a loop, then r'(A) = r(A) =r(AUe) for every A C F'\ ¢, so
T(M) = Z (q; — 1)T(E)_T(A)(y _ 1)|A|—7‘(A)

ACE
= 3 (@ — 1)y By A=) L $ (g BBy Al ()
ASE BCE
eZA ocB
= 3 (@) EOT A AT @) N ()T N ) (AL
ACE\e ACE\e
=(1+@y-1) Y (@— 1) EOD @y A=
ACE\e
= yT(M —e).

If e is a coloop, then 7/(A) = r(A) =r(AUe) — 1 for every A C E \ e, so
T(M) = Z ((E — 1)T(E)*T(A)(y _ 1)\A\7T(A)

ACE
= Z (z — 1)T(E)—T(A)(y \A\ r(4) 4 Z r(E)- T(B)( 1)|A|—T(B)
egACE e€BCE
= Y (- BT Ay gl )
ACE\e
+ Z T”(E\e)-i‘l) (r ”(A)+1)(y _ 1)|A|+1—(T”(A)+1)
ACEFE\e
= Z (z — 1)7“”(E\€)+1*?””(A)(y \A\ r(A) 4 Z "(E\e)—r"(A )(y _ 1)\14\*7“"(14)
ACEFE\e ACE\e
=((z-1)+1) Z (z — 1) B\ =" (A) () _ 1) AI=r"(4)
ACEFE\e
=T (MJe).

Finally, suppose that e is neither a loop nor a coloop. Then
r'(A)=r(A) and r"(A)=r(AUe) - 1.

Therefore,
T(M) = Z (& — 1) B =r(A) (y _ 1)lAl=r()

ACE

= Z [(z — 1)rE)=r(A) () 1)|A|*T(A)] + (@ - 1)r(B)=r(Ave)(,, _ 1)|AU6|7T(AU6)]
ACE\e

= > [l 1) EIT - AITTD] 4 [ - T EAD ST g AT
ACE\e

= > (@— 1) EDT @ AT @ o N (g - 1) BN (W) (g A=)
ACE\e ACE\e

= T(M —¢) + T(M/e).



