Monday 2/18

The Tutte Polynomial

Let M be a matroid with ground set E. Recall that we can delete or contract an element $e \in E$ to obtain respectively the matroids $M-e$ amd M / e on $E \backslash\{e\}$, whose basis systems are

$$
\begin{aligned}
\mathscr{B}(M-e) & =\{B \mid B \in \mathscr{B}(M), e \notin B\} \\
\mathscr{B}(M / e) & =\{B \backslash e \mid B \in \mathscr{B}(M), e \in B\} .
\end{aligned}
$$

Thus deletion is defined whenever e is not a coloop, and contraction is defined whenever e is not a loop.
Definition 1. The Tutte polynomial of M is compute recursively as

$$
T(M)=T(M ; x, y)= \begin{cases}1 & \text { if } E=\emptyset \tag{1}\\ x \cdot T(M / e) & \text { if } e \text { is a coloop } \\ y \cdot T(M-e) & \text { if } e \text { is a loop } \\ T(M-e)+T(M / e) & \text { otherwise }\end{cases}
$$

for any $e \in E$.

If $M=M(G)$ is a graphic matroid, we may write $T(G)$ instead of $T(M(G))$.
This is more of an algorithm than a definition, and at this point, it is not even clear that $T(M)$ is welldefined, because the formula seems to depend on the order in which we pick elements to delete and contract. However, a miracle occurs: it doesn't! We will soon prove this by giving a closed formula for $T(M)$ that does not depend on any such choice.

In the case that M is a uniform matroid, then it is clear at this point that $T(M)$ is well-defined by (1), because, up to isomorphism, $M-e$ and M / e are independent of the choices of $e \in E$.

Example 1. Suppose that $M \cong U_{n}(n)$, that is, every element of E is a coloop. By induction, $T(M)(x, y)=$ x^{n}. Dually, if $M \cong U_{0}(n)$ (i.e., every element of E is a loop), then $T(M)(x, y)=y^{n}$.

Example 2. Let $M \cong U_{1}(2)$ (the graphic matroid of the "digon", two vertices joined by two parallel edges). Let $e \in E$; then

$$
\begin{aligned}
T(M) & =T(M-e)+T(M / e) \\
& =T\left(U_{1}(1)\right)+T\left(U_{0}(1)\right)=x+y
\end{aligned}
$$

Example 3. Let $M \cong U_{2}(3)$ (the graphic matroid of K_{3}, as well as the matroid associated with the geometric lattice $\Pi_{3} \cong M_{5}$). Applying (11) for any $e \in E$ gives

$$
T\left(U_{2}(3)\right)=T\left(U_{2}(2)\right)+T\left(U_{1}(2)\right)=x^{2}+x+y
$$

On the other hand,

$$
T\left(U_{1}(3)\right)=T\left(U_{1}(2)\right)+T\left(U_{0}(2)\right)=x+y+y^{2} .
$$

In general, we can represent a calculation of $T(M)$ by a binary tree in which moving down corresponds to deleting or contracting:

Example 4. Here is a non-uniform example. Let G be the graph below.

One possibility is to recurse on edge a (or equivalently on b, c, or d). When we delete a, the edge d becomes a coloop, and contracting it produces a copy of K_{3}. Therefore

$$
T(G-a)=x\left(x^{2}+x+y\right)
$$

by Example 3 Next, apply the recurrence to the edge b in G / a. The graph $G / a-b$ has a coloop c, contracting which produces a digon. Meanwhile, $M(G / a / b) \cong U_{1}(3)$. Therefore

$$
T(G / a-b)=x(x+y) \quad \text { and } \quad T(G / a / b)=x+y+y^{2}
$$

Putting it all together, we get

$$
\begin{aligned}
T(G) & =T(G-a)+T(G / a) \\
& =T(G-a)+T(G / a-b)+T(G / a / b) \\
& =x\left(x^{2}+x+y\right)+x(x+y)+\left(x+y+y^{2}\right) \\
& =x^{3}+2 x^{2}+2 x y+x+y+y^{2}
\end{aligned}
$$

On the other hand, we could have recursed first on e, getting

$$
\begin{aligned}
T(G) & =T(G-e)+T(G / e) \\
& =T(G-e-c)+T(G-e / c)+T(G / e-c)+T(G / e / c) \\
& =x^{3}+\left(x^{2}+x+y\right)+x(x+y)+y(x+y) \\
& =x^{3}+2 x^{2}+2 x y+x+y+y^{2} .
\end{aligned}
$$

We can actually see the usefulness of $T(M)$ even before proving that it is well-defined!
Proposition 1. $T(M ; 1,1)$ equals the number of bases of M.

Proof. Let $b(M)=T(M ; 1,1)$. Then (1) gives

$$
b(M)= \begin{cases}1 & \text { if } E=\emptyset \\ b_{G / e} & \text { if } e \text { is a coloop } \\ b_{G-e} & \text { if } e \text { is a loop } \\ b(M-e)+b(M / e) & \text { otherwise }\end{cases}
$$

which is identical to the recurrence for $|\mathscr{B}(M)|$ that we observed on Friday $2 / 15$.

Many other invariants of M can be found in this way by making appropriate substitutions for the indeterminates x, y in $T(M)$. In particular, if we let $c(M)=T(M ; 2,2)$, then

$$
c(M)= \begin{cases}1 & \text { if } E=\emptyset \\ 2 c_{G / e} & \text { if } e \text { is a coloop } \\ 2 c_{G-e} & \text { if } e \text { is a loop } \\ c(M-e)+c(M / e) & \text { otherwise }\end{cases}
$$

so $c(M)=2^{|E|}$. This suggests that $T(M)$ ought to have a closed formula as a sum over subsets $A \subseteq E$, with each summand becoming 1 upon setting $x=1$ and $y=1$-for example, with each summand a product of powers of $x-1$ and $y-1$. In fact, this is the case.

Theorem 2. Let r be the rank function of the matroid M. Then

$$
\begin{equation*}
T(M ; x, y)=\sum_{A \subseteq E}(x-1)^{r(E)-r(A)}(y-1)^{|A|-r(A)} . \tag{2}
\end{equation*}
$$

The quantity $r(E)-r(A)$ is the corank of A; it is the minimum number of elements one needs to add to A to obtain a spanning set of M. Meanwhile, $|A|-r(A)$ is the nullity of A : the minimum number of elements one needs to remove from A to obtain an acyclic set. Accordingly, (2) is referred to as the the corank-nullity generating function.
(As an exercise, work out $T(G ; x, y)$ for the graph G of Example 4] you shoudl get the same answer as above.)

Proof of Theorem (2) Let $\tilde{T}(M)=\tilde{T}(M ; x, y)$ denote the generating function on the right-hand side of (2). We will prove by induction on $n=|E|$ that $\tilde{T}(M)$ obeys the recurrence (11) for every ground set element e, hence equals $T(M)$. Let r^{\prime} and $r^{\prime \prime}$ denote the rank functions on $M-e$ and M / e respectively.

For the base case, if $E=\emptyset$, then (2) gives $\tilde{T}(M)=1=T(M)$.
If e is a loop, then $r^{\prime}(A)=r(A)=r(A \cup e)$ for every $A \subset E \backslash e$, so

$$
\begin{aligned}
\tilde{T}(M) & =\sum_{A \subseteq E}(x-1)^{r(E)-r(A)}(y-1)^{|A|-r(A)} \\
& =\sum_{\substack{A \subseteq E \\
e \notin A}}(x-1)^{r(E)-r(A)}(y-1)^{|A|-r(A)}+\sum_{\substack{B \subseteq E \\
e \in B}}(x-1)^{r(E)-r(B)}(y-1)^{|A|-r(B)} \\
& =\sum_{A \subseteq E \backslash e}(x-1)^{r^{\prime}(E \backslash e)-r^{\prime}(A)}(y-1)^{|A|-r^{\prime}(A)}+\sum_{A \subseteq E \backslash e}(x-1)^{r^{\prime}(E \backslash e)-r^{\prime}(A)}(y-1)^{|A|+1-r^{\prime}(A)} \\
& =(1+(y-1)) \sum_{A \subseteq E \backslash e}(x-1)^{r^{\prime}(E \backslash e)-r^{\prime}(A)}(y-1)^{|A|-r^{\prime}(A)} \\
& =y \tilde{T}(M-e)
\end{aligned}
$$

If e is a coloop, then $r^{\prime \prime}(A)=r(A)=r(A \cup e)-1$ for every $A \subset E \backslash e$, so

$$
\begin{aligned}
\tilde{T}(M)= & \sum_{A \subseteq E}(x-1)^{r(E)-r(A)}(y-1)^{|A|-r(A)} \\
= & \sum_{e \notin A \subseteq E}(x-1)^{r(E)-r(A)}(y-1)^{|A|-r(A)}+\sum_{e \in B \subseteq E}(x-1)^{r(E)-r(B)}(y-1)^{|A|-r(B)} \\
= & \sum_{A \subseteq E \backslash e}(x-1)^{\left(r^{\prime \prime}(E \backslash e)+1\right)-r^{\prime \prime}(A)}(y-1)^{|A|-r^{\prime \prime}(A)} \\
& +\sum_{A \subseteq E \backslash e}(x-1)^{\left(r^{\prime \prime}(E \backslash e)+1\right)-\left(r^{\prime \prime}(A)+1\right)}(y-1)^{|A|+1-\left(r^{\prime \prime}(A)+1\right)} \\
= & \sum_{A \subseteq E \backslash e}(x-1)^{r^{\prime \prime}(E \backslash e)+1-r^{\prime \prime}(A)}(y-1)^{|A|-r^{\prime \prime}(A)}+\sum_{A \subseteq E \backslash e}(x-1)^{r^{\prime \prime}(E \backslash e)-r^{\prime \prime}(A)}(y-1)^{|A|-r^{\prime \prime}(A)} \\
= & ((x-1)+1) \sum_{A \subseteq E \backslash e}(x-1)^{r^{\prime \prime}(E \backslash e)-r^{\prime \prime}(A)}(y-1)^{|A|-r^{\prime \prime}(A)} \\
= & x \tilde{T}(M / e) .
\end{aligned}
$$

Finally, suppose that e is neither a loop nor a coloop. Then

$$
r^{\prime}(A)=r(A) \quad \text { and } \quad r^{\prime \prime}(A)=r(A \cup e)-1
$$

Therefore,

$$
\begin{aligned}
\tilde{T}(M) & =\sum_{A \subseteq E}(x-1)^{r(E)-r(A)}(y-1)^{|A|-r(A)} \\
& =\sum_{A \subseteq E \backslash e}\left[(x-1)^{r(E)-r(A)}(y-1)^{|A|-r(A)}\right]+\left[(x-1)^{r(E)-r(A \cup e)}(y-1)^{|A \cup e|-r(A \cup e)}\right] \\
& =\sum_{A \subseteq E \backslash e}\left[(x-1)^{r^{\prime}(E \backslash e)-r^{\prime}(A)}(y-1)^{|A|-r^{\prime}(A)}\right]+\left[(x-1)^{\left(r^{\prime \prime}(E)+1\right)-\left(r^{\prime \prime}(A)+1\right)}(y-1)^{|A|+1-\left(r^{\prime \prime}(A)-1\right)}\right] \\
& =\sum_{A \subseteq E \backslash e}(x-1)^{r^{\prime}(E \backslash e)-r^{\prime}(A)}(y-1)^{|A|-r^{\prime}(A)}++\sum_{A \subseteq E \backslash e}(x-1)^{r^{\prime \prime}(E \backslash e)-r^{\prime \prime}(A)}(y-1)^{|A|-r^{\prime \prime}(A)} \\
& =\tilde{T}(M-e)+\tilde{T}(M / e) .
\end{aligned}
$$

