
Monday 2/11

Graphic Matroids

Definition 1. Let G be a finite graph with vertices V and edges E. For each subset A ⊂ E, the corresponding
induced subgraph of G is the graph G|A with vertices V and edges A. The graphic matroid or complete
connectivity matroid M(G) on E is defined by the closure operator

Ā = {e = xy ∈ E | A contains a path from x to y}(1)

= {e = xy ∈ E | x, y belong to the same component of G|A}.

The associated rank function is

r(A) = min{|A′| : A′ ⊆ A, A′ = A}.

Such a subset A′ is called a spanning forest of A (or of G|A).

Theorem 1. Let A′ ⊆ A. Then any two of the following conditions imply the third (and characterize
spanning forests of A):

(1) r(A′) = r(A);
(2) A′ is acyclic;
(3) |A′| = |V | − c, where c is the number of connected components of A.

The flats of M(G) correspond to the subgraphs whose components are all induced subgraphs of G. For
W ⊆ V , the induced subgraph G[W ] is the graph with vertices W and edges {xy ∈ E | x, y ∈ W}.

Example 1. If G is a forest (a graph with no cycles), then no two vertices are joined by more than one
path. Therefore, every edge set is a flat, and M(G) is a Boolean algebra.

Example 2. If G is a cycle of length n, then every edge set of size < n− 1 is a flat, but the closure of a set
of size n − 1 is the entire edge set. Therefore, M(G) ∼= Un−1(n).

Example 3. If G = Kn (the complete graph on n vertices), then a flat of M(G) is the same thing as an
equivalence relation on [n]. Therefore, M(Kn) is naturally isomorphic to the partition lattice Πn.

Equivalent Definitions of Matroids

In addition to rank functions, lattices of flats, and closure operators, there are many other equivalent ways
to define a matroid on a finite ground set E. In the fundamental example of a linear matroid M , some of
these definitions correspond to linear-algebraic notions such as linear independence and bases.

Definition 2. A (matroid) independence system I is a family of subsets of E such that

∅ ∈ I ;(2a)

if I ∈ I and I ′ ⊆ I, then I ′ ∈ I ; and(2b)

if I, J ∈ I and |I | < |J |, then there exists x ∈ J \ I such that I ∪ x ∈ B.(2c)

Note: A family of subsets satisfying (2a) and (2b) is called a simplicial complex on E.

If E is a finite subset of a vector space, then the linearly independent subsets of E form a matroid indepen-
dence system. Conditions (2a) and (2b) are clear. For condition (2c), the span of J has greater dimension
than that of I , so there must be some x ∈ J outside the span of I , and then I ∪ x is linearly independent.

A matroid independence system records the same combinatorial structure on E as a matroid rank function.



Proposition 2. Let E be a finite set.

(1) If r is a matroid rank function on E, then

I = {A ⊂ E | r(A) = |A|}

is an independence system.
(2) If B is an independence system on E, then

r(A) = max{|I ∩ A| | I ∈ B}

is a matroid rank function.
(3) These constructions are mutual inverses.

If M = M(G) is a graphic matroid, the associated independence system is the family of acyclic edge sets
in G. To see this, notice that if A is a set of edges and e ∈ A, then r(A \ e) < r(A) if and only if deleting
e breaks a component of G|A into two smaller components (so that in fact r(A \ e) = r(A) − 1. This is
equivalent to the condition that e belongs to no cycle in A. Therefore, if A is acyclic, then deleting its edges
one by one gets you down to ∅ and decrements the rank each time, so r(A) = |A|. On the other hand, if A

contains a cycle, then deleting any of its edges won’t change the rank, so r(A) < |A|.

Here’s what the “donation” condition (2c) means in the graphic setting. Suppose that |V | = n, and let c(H)
denote the number of components of a graph H . If I, J are acyclic edge sets with |I | < |J |, then

c(G|I) = n − |I | > c(G|J ) = n − |J |,

and there must be some edge e ∈ J whose endpoints belong to different components of G|I ; that is, I ∪ e is
acyclic.

The maximal independent sets are called bases of the matroid.

Definition 3. A (matroid) basis system B on E is a family of subsets of E such that, for all B, B ′ ∈ B,

|B| = |B′|; and(3a)

for all e ∈ B \ B′, there exists e′ ∈ B′ \ B such that B \ e ∪ e′ ∈ B.(3b)

The condition (3b) can be replaced with

for all e ∈ B \ B′, there exists e′ ∈ B′ \ B such that B′ \ e′ ∪ e ∈ B,(3c)

although this is not obvious (proof for homework).

Indeed, if S is a finite set of vectors spanning a vector space V , then the subsets of S that are bases for V

all have the same cardinality (namely dim V ) and satisfy the basis exchange condition (3b).

If G is a connected graph, then the bases of M(G) are its spanning trees.
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Here’s the interpretation of (3b). If e ∈ B \ B′, then B \ e has two connected components. Since B′ is
connected, there must be some edge e′ with one endpoint in each of those components, and then B \ e ∪ e′

is a spanning tree.
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Possibilities

As for (3c), if e ∈ B \B′, then B′ ∪ e must contain a unique cycle C (formed by e together with the unique
path in B′ between the endpoints of e). Deleting any edge e′ ∈ C \ e will produce a spanning tree.
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