Friday 2/8/08

Geometric Lattices and Matroids

Warning: If A is a set and e isn't, then I am going to abuse notation by writing $A \cup e$ and $A \backslash e$ instead of $A \cup\{e\}$ and $A \backslash\{e\}$, when no confusion can arise.

Recall that a matroid closure operator on a finite set E is a map $A \mapsto \bar{A}$ on subsets $A \subseteq E$ satisfying

$$
\begin{align*}
& A \subseteq \bar{A}=\overline{\bar{A}} \tag{1a}\\
& A \subseteq B \Longrightarrow \bar{A} \subseteq \bar{B} \tag{1b}\\
& e \notin \bar{A}, e \in \overline{A \cup f} \Longrightarrow f \in \overline{A \cup e} \text { (the exchange condition). } \tag{1c}
\end{align*}
$$

A matroid M is then a set E (the "ground set") together with a matroid closure operator. A closed subset of M (i.e., a set that is its own closure) is called a flat of M. The matroid is called simple if \emptyset and all singleton sets are closed.
Theorem 1. 1. Let M be a simple matroid with finite ground set E. Let $L(M)$ be the poset of flats of M, ordered by inclusion. Then $L(M)$ is a geometric lattice, under the operations $A \wedge B=A \cap B, A \vee B=\overline{A \cup B}$.
2. Let L be a geometric lattice and let E be its set of atoms. Then the function $\bar{A}=\{e \in E \mid e \leq \bigvee A\}$ is a matroid closure operator on E.

Proof. For assertion (1), we start by showing that $L(M)$ is a lattice. The intersection of flats is a flat (an easy exercise), so the operation $A \wedge B=A \cap B$ makes $L(M)$ into a meet-semilattice. It's bounded (with $\hat{0}=\bar{\emptyset}$ and $\hat{1}=E)$, so it's a lattice by $[1 / 25 / 08$, Prop. 2]. Meanwhile, $\overline{A \cup B}$ is the meet of all flats containing both A and B.

By definition of a simple matroid, the singleton subsets of E are atoms in $L(M)$. Every flat is the join of the atoms corresponding to its elements, so $L(M)$ is atomic. The next step is to show that $L(M)$ is semimodular.

Claim: If $F \in L(M)$ and $e \in E \backslash F$, then $F \lessdot F \vee\{e\}$.
Indeed, if $F \subsetneq F^{\prime} \subseteq F \vee\{e\}=\overline{F \cup\{e\}}$, then for any $f \in F^{\prime} \backslash F$, we have $e \in F \vee\{f\} \subset F^{\prime}$ by (1c), so $F^{\prime}=F \vee\{e\}$, proving the claim.

On the other hand, if $F \lessdot F^{\prime}$ then $F^{\prime}=F \vee\{e\}$ for any atom $e \in F^{\prime} \backslash F$. So we have exactly characterized the covering relations in $L(M)$. It follows that L is ranked, with rank function

$$
r(F)=\min \{|B|: B \subset E, F=\bigvee B\}
$$

(Such a set B is called a basis of F.)
We now need to show that r satisfies the submodular inequality. Let F, F^{\prime} be flats and let $G=F \wedge F^{\prime}$. Let

$$
\begin{aligned}
& G \lessdot G \vee\left\{e_{1}\right\} \lessdot G \vee\left\{e_{1}\right\} \vee\left\{e_{2}\right\} \lessdot \cdots \lessdot G \vee\left\{e_{1}\right\} \vee \cdots \vee\left\{e_{p}\right\}=F \\
& G \lessdot G \vee\left\{e_{1}^{\prime}\right\} \lessdot G \vee\left\{e_{1}^{\prime}\right\} \vee\left\{e_{2}^{\prime}\right\} \lessdot \cdots \lessdot G \vee\left\{e_{1}^{\prime}\right\} \vee \cdots \vee\left\{e_{q}^{\prime}\right\}=F^{\prime}
\end{aligned}
$$

be maximal chains, so that

$$
\begin{equation*}
r(F)-r(G)=p \quad \text { and } \quad r\left(F^{\prime}\right)-r(G)=q \tag{2}
\end{equation*}
$$

But then $\overline{G \cup\left\{e_{1}, \ldots, e_{p}, e_{1}^{\prime}, \ldots, e_{q}^{\prime}\right\}}=F \vee F^{\prime}$, so

$$
F \leq F \vee\left\{e_{1}^{\prime}\right\} \leq \cdots \leq F \vee\left\{e_{1}^{\prime}\right\} \vee \cdots \vee\left\{e_{q}^{\prime}\right\}=F \vee F^{\prime}
$$

where each \leq is either \lessdot or $=$. So $r\left(F \vee F^{\prime}\right)-r(G) \leq p+q$, which when combined with (2) implies submodularity.

For assertion (2), it is easy to check that $A \mapsto \bar{A}$ is a closure operator, and that $\bar{A}=A$ for $|A| \leq 1$. So the only nontrivial part is to establish (1c).

Note that if L is semimodular, $e \in L$ is an atom, and $x \nsupseteq e$, then $x \vee e \gtrdot e$ (because $r(x \vee e)-r(x) \leq$ $r(e)-r(x \wedge e)=1-0=1)$.

Accordingly, suppose that $e \notin \bar{A}$ but $e \in \overline{A \cup f}$. Let $x=\bigvee A \in L$. Then

$$
x \lessdot x \vee f
$$

and

$$
x<x \vee e \leq x \vee f
$$

which implies that $x \vee f=x \vee e$, and in particular $f \leq x \vee e=\overline{A \cup e}$, proving that $A \mapsto \bar{A}$ is a matroid closure operator.

In view of this bijection, we can describe a matroid on ground set E by the function $A \mapsto r(\bar{A})$, where r is the rank function of the associated geometric lattice. It is standard to abuse notation by calling this function r also. Formally:
Definition 1. A matroid rank function on E is a function $r: 2^{E} \rightarrow \mathbb{N}$ satisfying

$$
\begin{align*}
& r(A) \leq|A| ; \quad \text { and } \tag{3a}\\
& r(A)+r(B) \geq r(A \cap B)+r(A \cup B) \tag{3b}
\end{align*}
$$

for all $A, B \subseteq E$.
Example 1. Let $n=|E|$ and $0 \leq k \leq E$, and define

$$
r(A)=\min (k,|A|)
$$

This clearly satisfies (3a) and (3b). The corresponding matroid is called the uniform matroid $U_{k}(n)$, and has closure operator

$$
\bar{A}=\left\{\begin{array}{l}
A \text { if }|A|<k, \\
E \text { if }|A| \geq k
\end{array}\right.
$$

So the flats of M of the sets of cardinality $<k$, as well as (of course) E itself. Therefore, the lattice of flats looks like a Boolean algebra \mathscr{B}_{n} that has been truncated at the $k^{\text {th }}$ rank. For $n=3$ and $k=2$, this lattice is M_{5}; for $n=4$ and $k=3$, it is the following:

If S is a set of n points in general position in \mathbb{F}^{k}, then the corresponding matroid is isomorphic to $U_{k}(n)$. This sentence is tautological, in the sense that it can be taken as a definition of "general position". Indeed, if \mathbb{F} is infinite and the points are chosen randomly (in some reasonable analytic or measure-theoretic sense), then $L(S)$ will be isomorphic to $U_{k}(n)$ with probability 1 . On the other hand, \mathbb{F} must be sufficiently large (in terms of n) in order for \mathbb{F}^{k} to have n points in general position.

As for "isomorphic", here's a precise definition.
Definition 2. Let M, M^{\prime} be matroids on ground sets E, E^{\prime} respectively. We say that M and M^{\prime} are isomorphic, written $M \cong M^{\prime}$, if there is a bijection $f: E \rightarrow E^{\prime}$ meeting any (hence all) of the following conditions:
(1) There is a lattice isomorphism $L(M) \cong L\left(M^{\prime}\right)$;
(2) $r(A)=r(f(A))$ for all $A \subseteq E$. (Here $f(A)=\{f(a) \mid a \in A\}$.)
(3) $\overline{f(A)}=f(\bar{A})$ for all $A \subseteq E$.

In general, every equivalent definition of "matroid" (and there are several more coming) will induce a corresponding equivalent notion of "isomorphic".

Graphic Matroids

One important application of matroids is in graph theory. Let G be a finite graph with vertices V and edges E. For convenience, we'll write $e=x y$ to mean " e is an edge with endpoints x, y "; this should not be taken to exclude the possibility that e is a loop (i.e., $x=y$) or that some other edge might have the same pair of endpoints.
Definition 3. For each subset $A \subset E$, the corresponding induced subgraph of G is the graph $\left.G\right|_{A}$ with vertices V and edges A. The graphic matroid or complete connectivity matroid $M(G)$ on E is defined by the closure operator

$$
\begin{equation*}
\bar{A}=\left\{e=x y \in E \mid x, y \text { belong to the same component of }\left.G\right|_{A}\right\} . \tag{4}
\end{equation*}
$$

Equivalently, $e=x y \in \bar{A}$ if there is a path between x, e consisting of edges in A (for short, an A-path). For example, in the following graph, $14 \in \bar{A}$ because $\{12,24\} \subset A$.

Proposition 2. The operator $A \mapsto \bar{A}$ defined by (4) is a matroid closure operator.

Proof. It is easy to check that $A \subseteq \bar{A}$ for all A, and that $A \subseteq B \Longrightarrow \bar{A} \subseteq \bar{B}$. If $e=x y \in \bar{A}$, then x, y can be joined by an \bar{A}-path P, and each edge in P can be replaced with an \bar{A}-path, giving an A-path between x and y.

Finally, suppose $e=x y \notin \bar{A}$ but $e \in \overline{A \cup f}$. Let P be an $(A \cup f)$-path; in particular, $f \in P$. Then $P \cup f$ is a cycle, from which deleting f produces an $(A \cup e)$-path between the endpoints of f.

