Friday 2/8/08

Geometric Lattices and Matroids

Warning: If A is a set and e isn't, then I am going to abuse notation by writing $A \cup e$ and $A \setminus e$ instead of $A \cup \{e\}$ and $A \setminus \{e\}$, when no confusion can arise.

Recall that a **matroid closure operator** on a finite set E is a map $A \mapsto \overline{A}$ on subsets $A \subseteq E$ satisfying

(1a)
$$A \subseteq \overline{A} = \overline{\overline{A}};$$

(1b)
$$A \subseteq B \implies \bar{A} \subseteq \bar{B};$$

(1c) $e \notin \overline{A}, \ e \in \overline{A \cup f} \implies f \in \overline{A \cup e}$ (the exchange condition).

A <u>matroid</u> M is then a set E (the "ground set") together with a matroid closure operator. A closed subset of M (i.e., a set that is its own closure) is called a <u>flat</u> of M. The matroid is called <u>simple</u> if \emptyset and all singleton sets are closed.

Theorem 1. 1. Let M be a simple matroid with finite ground set E. Let L(M) be the poset of flats of M, ordered by inclusion. Then L(M) is a geometric lattice, under the operations $A \land B = A \cap B$, $A \lor B = \overline{A \cup B}$.

2. Let L be a geometric lattice and let E be its set of atoms. Then the function $\overline{A} = \{e \in E \mid e \leq \bigvee A\}$ is a matroid closure operator on E.

Proof. For assertion (1), we start by showing that L(M) is a lattice. The intersection of flats is a flat (an easy exercise), so the operation $A \wedge B = A \cap B$ makes L(M) into a meet-semilattice. It's bounded (with $\hat{0} = \bar{\emptyset}$ and $\hat{1} = E$), so it's a lattice by [1/25/08, Prop. 2]. Meanwhile, $\overline{A \cup B}$ is the meet of all flats containing both A and B.

By definition of a simple matroid, the singleton subsets of E are atoms in L(M). Every flat is the join of the atoms corresponding to its elements, so L(M) is atomic. The next step is to show that L(M) is semimodular.

<u>Claim</u>: If $F \in L(M)$ and $e \in E \setminus F$, then $F < F \lor \{e\}$.

Indeed, if $F \subsetneq F' \subseteq F \lor \{e\} = \overline{F \cup \{e\}}$, then for any $f \in F' \setminus F$, we have $e \in F \lor \{f\} \subset F'$ by (1c), so $F' = F \lor \{e\}$, proving the claim.

On the other hand, if F < F' then $F' = F \lor \{e\}$ for any atom $e \in F' \setminus F$. So we have exactly characterized the covering relations in L(M). It follows that L is ranked, with rank function

$$r(F) = \min\left\{|B|: B \subset E, F = \bigvee B\right\}.$$

(Such a set B is called a *basis* of F.)

We now need to show that r satisfies the submodular inequality. Let F, F' be flats and let $G = F \wedge F'$. Let

$$G \ \leqslant \ G \lor \{e_1\} \ \leqslant \ G \lor \{e_1\} \lor \{e_2\} \ \leqslant \ \cdots \ \leqslant \ G \lor \{e_1\} \lor \cdots \lor \{e_p\} = F$$
$$G \ \leqslant \ G \lor \{e_1'\} \ \leqslant \ G \lor \{e_1'\} \lor \{e_2'\} \ \leqslant \ \cdots \ \leqslant \ G \lor \{e_1'\} \lor \cdots \lor \{e_q'\} = F'$$

be maximal chains, so that

(2)
$$r(F) - r(G) = p$$
 and $r(F') - r(G) = q$.

But then $\overline{G \cup \{e_1, \dots, e_p, e'_1, \dots, e'_q\}} = F \lor F'$, so

$$F \leq F \vee \{e'_1\} \leq \cdots \leq F \vee \{e'_1\} \vee \cdots \vee \{e'_q\} = F \vee F',$$

where each \leq is either \leq or =. So $r(F \lor F') - r(G) \leq p + q$, which when combined with (2) implies submodularity.

For assertion (2), it is easy to check that $A \mapsto \overline{A}$ is a closure operator, and that $\overline{A} = A$ for $|A| \leq 1$. So the only nontrivial part is to establish (1c).

Note that if L is semimodular, $e \in L$ is an atom, and $x \geq e$, then $x \vee e \geq e$ (because $r(x \vee e) - r(x) \leq r(e) - r(x \wedge e) = 1 - 0 = 1$).

Accordingly, suppose that $e \notin \overline{A}$ but $e \in \overline{A \cup f}$. Let $x = \bigvee A \in L$. Then

 $x \lessdot x \lor f$

and

$$x < x \lor e \le x \lor f$$

which implies that $x \lor f = x \lor e$, and in particular $f \le x \lor e = \overline{A \cup e}$, proving that $A \mapsto \overline{A}$ is a matroid closure operator.

In view of this bijection, we can describe a matroid on ground set E by the function $A \mapsto r(\overline{A})$, where r is the rank function of the associated geometric lattice. It is standard to abuse notation by calling this function r also. Formally:

Definition 1. A matroid rank function on E is a function $r: 2^E \to \mathbb{N}$ satisfying

(3a)
$$r(A) \le |A|;$$
 and

(3b) $r(A) + r(B) \ge r(A \cap B) + r(A \cup B)$

for all $A, B \subseteq E$.

Example 1. Let n = |E| and $0 \le k \le E$, and define

$$r(A) = \min(k, |A|).$$

This clearly satisfies (3a) and (3b). The corresponding matroid is called the *uniform matroid* $U_k(n)$, and has closure operator

$$\bar{A} = \begin{cases} A \text{ if } |A| < k, \\ E \text{ if } |A| \ge k. \end{cases}$$

So the flats of M of the sets of cardinality $\langle k$, as well as (of course) E itself. Therefore, the lattice of flats looks like a Boolean algebra \mathscr{B}_n that has been truncated at the k^{th} rank. For n = 3 and k = 2, this lattice is M_5 ; for n = 4 and k = 3, it is the following:

If S is a set of n points in general position in \mathbb{F}^k , then the corresponding matroid is isomorphic to $U_k(n)$. This sentence is tautological, in the sense that it can be taken as a definition of "general position". Indeed, if \mathbb{F} is infinite and the points are chosen randomly (in some reasonable analytic or measure-theoretic sense), then L(S) will be isomorphic to $U_k(n)$ with probability 1. On the other hand, \mathbb{F} must be sufficiently large (in terms of n) in order for \mathbb{F}^k to have n points in general position.

As for "isomorphic", here's a precise definition.

Definition 2. Let M, M' be matroids on ground sets E, E' respectively. We say that M and M' are **isomorphic**, written $M \cong M'$, if there is a bijection $f : E \to E'$ meeting any (hence all) of the following conditions:

- (1) There is a lattice isomorphism $L(M) \cong L(M')$;
- (2) r(A) = r(f(A)) for all $A \subseteq E$. (Here $f(A) = \{f(a) \mid a \in A\}$.)
- (3) $\overline{f(A)} = f(\overline{A})$ for all $A \subseteq E$.

In general, every equivalent definition of "matroid" (and there are several more coming) will induce a corresponding equivalent notion of "isomorphic".

Graphic Matroids

One important application of matroids is in graph theory. Let G be a finite graph with vertices V and edges E. For convenience, we'll write e = xy to mean "e is an edge with endpoints x, y"; this should not be taken to exclude the possibility that e is a loop (i.e., x = y) or that some other edge might have the same pair of endpoints.

Definition 3. For each subset $A \subset E$, the corresponding *induced subgraph* of G is the graph $G|_A$ with vertices V and edges A. The graphic matroid or complete connectivity matroid M(G) on E is defined by the closure operator

(4) $\bar{A} = \{e = xy \in E \mid x, y \text{ belong to the same component of } G|_A\}.$

Equivalently, $e = xy \in \overline{A}$ if there is a path between x, e consisting of edges in A (for short, an A-path). For example, in the following graph, $14 \in \overline{A}$ because $\{12, 24\} \subset A$.

Proposition 2. The operator $A \mapsto \overline{A}$ defined by (4) is a matroid closure operator.

Proof. It is easy to check that $A \subseteq \overline{A}$ for all A, and that $A \subseteq B \implies \overline{A} \subseteq \overline{B}$. If $e = xy \in \overline{A}$, then x, y can be joined by an \overline{A} -path P, and each edge in P can be replaced with an A-path, giving an A-path between x and y.

Finally, suppose $e = xy \notin \overline{A}$ but $e \in \overline{A \cup f}$. Let P be an $(A \cup f)$ -path; in particular, $f \in P$. Then $P \cup f$ is a cycle, from which deleting f produces an $(A \cup e)$ -path between the endpoints of f.

