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Geometric Lattices

Definition 1. A lattice is geometric if it is (upper) semimodular and atomic.

The term “geometric” comes from the following construction. Let E be a finite set of nonzero vectors in a
vector space V . Let

L(E) =
{

W ∩ E | W ⊆ V is a vector subspace
}

,

which is a poset under inclusion. In fact, L(E) is a geometric lattice (homework problem). Its atoms are
the singleton sets {{s} | s ∈ E}, and its rank function is r(Z) = dim〈Z〉, where 〈Z〉 denotes the linear span
of the vectors in Z.

A closely related construction is the lattice

Laff(E) =
{

W ∩ E | W ⊆ V is an affine subspace
}

.

(An affine subspace of V is a translate of a vector subspace: for example, a line or plane not necessarily

containing the origin.) In fact, any lattice of the form Laff(E) can be expressed in the form L(Ê), where

Ê is a certain point set constructed from E (homework problem) However, the rank of Z ∈ Laff(E) is
one more than the dimension of its affine span, making it more convenient to picture geometric lattices of
rank 3.

Example 1. The lattices Ln(q) can be obtained as L(E), where E = Fn
q \{~0}. As we know, Ln(q) is actually

modular.

Example 2. Πn is a geometric lattice. (Homework problem.)

Example 3. Let E be the point configuration on the left below. Then Laff(E) is the lattice on the right
(which in this case is modular).
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Example 4. For arbitrary E, the lattice L(E) is not in general modular. For example, let E = {w, x, y, z},
where w, x, y, z ∈ R3 are in general position; that is, any three of them form a basis. Then A = {w, x} and
B = {y, z} are flats, and

r(A) = r(B) = 2, r(A ∧ B) = 0, r(A ∨ B) = 3

where r is the rank function on L(E).

Recall that a lattice is relatively complemented if, whenever y ∈ [x, z] ⊆ L, there exists u ∈ [x, z] such that
y ∧ u = x and y ∨ u = z.

Proposition 1. A semimodular lattice L is atomic (equivalently, geometric) if and only if it is relatively
complemented.



Here’s the geometric interpretation of being relatively complemented. Suppose that V is a vector space,
L = L(E) for some point set E ⊆ V , and that X ⊆ Y ⊆ Z ⊆ E are vector subspaces of V spanned by flats

of L(E). For starters, consider the case that X = {~0}. Then we can choose a basis B of the space Y and
extend it to a basis B′ of Z, and the vector set B′ \ B spans a subspace of Z that is complementary to Y .

In the more general case (where we do not require that X = {~0}), we can choose a basis B for X , extend it
to a basis B′ of Y , and extend B′ to a basis B′′ of Z. Then B ∪ (B′′ \ B′) spans a subspace U ⊆ Z that is
relatively complementary to Y , i.e., U ∩ Y = X and U + Y = Z.

Sketch of proof of Proposition 1. Suppose that L is relatively complemented and let X ∈ L. If X = 0̂ then
there is nothing to prove. Otherwise, let A < X be an atom and let X ′ be a complement for A in [0̂, X ].
Then X ′ < X and X ′ ∨ A. Replace X with X ′ and repeat. By induction on rank, we eventually get down
to 0̂, and the list of atoms produced has join X .

Now, suppose that L is atomic. Let y ∈ [x, z], and choose u ∈ [x, z] such that y∧u = x (for instance, u = x).
If y ∨ u = z then we are done. Otherwise, choose an atom a such that a ≤ z but a 6≤ y ∨ u. Set u′ = u ∨ a,
so that u′ > u (in fact u′

m u). Then, show that u′ ∨ y > u∨ y and that u′ ∧ y = u∧ y = x (details omitted).
By repeatedly replacing u with u′ if necessary, we eventually obtain a complement for y in [x, z]. �

Matroids

Definition 2. Let E be a finite set. A closure operator on E is a map 2E → 2E sending A to Ā, such

that (i) A ⊆ Ā = Ā and (ii) if A ⊆ B, then Ā ⊆ B̄.

As a not-quite-trivial consequence

(1) Ā ∩ B̄ = Ā ∩ B̄ A, B ⊆ E,

because Ā ∩ B̄ ⊂ Ā = Ā.

A matroid closure operator on E is a closure operator satisfying in addition the exchange axiom:

(2) if e 6∈ Ā but e ∈ A ∪ {f}, then f ∈ A ∪ {e}.

A matroid M is a set E (the “ground set”) together with a matroid closure operator. A closed subset of
M (i.e., a set that is its own closure) is called a flat of M . The matroid is called simple if the empty set
and all singleton sets are closed.

Example 5. Let V be a vector space over a field F, and let E ⊆ V be a finite set. Then

Ā = F-span(A) ∩ E

is a matroid closure operator on E. It is easy to check the conditions for a closure operator. For condition (2),

if e ∈ A ∪ {f}, then we have a linear equation

e = cff +
∑

a∈A

caa, cf , ca ∈ F.

If e 6∈ Ā, then cf 6= 0, so we can solve for f to express it as a linear combination of the vectors in A ∪ {e}.

The big idea is that the matroid structure records combinatorial information about linear dependence (i.e.,
which vectors belong to the linear spans of other sets of vectors) without having to worry about the actual
coordinates of the vectors.

Theorem 2. 1. Let M be a simple matroid with finite ground set E. Let L(M) be the poset of closed subsets
of M , ordered by inclusion. Then L(M) is a geometric lattice.

2. Let L be a geometric lattice and let E be its set of atoms. Then the function Ā = {e ∈ E | e ≤
∨

A} is a
matroid closure operator on E.


