Friday 2/1/08

Modular and Semimodular Lattices

Definition 1. A lattice L is modular if for every $x, y, z \in L$ with $x \leq z$,

$$
\begin{equation*}
x \vee(y \wedge z)=(x \vee y) \wedge z \tag{1}
\end{equation*}
$$

It is (upper) semimodular if for every $x, y \in L$,

$$
\begin{equation*}
x \wedge y \lessdot y \quad \Longrightarrow \quad x \lessdot x \vee y \tag{2}
\end{equation*}
$$

Last time, we showed that modular \Longrightarrow semimodular.
Lemma 1. Suppose L is semimodular and let $x, y, z \in L$. If $x \lessdot y$, then either $x \vee z=y \vee z$ or $x \vee z \lessdot y \vee z$.

Proof. Let $w=(x \vee z) \wedge y)$. Note that $x \leq w \leq y$. Therefore, either $w=x$ or $w=y$.

- If $w=y$, then $x \vee z \geq y$. So $x \vee z=y \vee(x \vee z)=y \vee z$.
- If $w=x$, then $(x \vee z) \wedge y=x \lessdot y$. Therefore, $(x \vee z) \lessdot(x \vee z) \vee y=y \vee z$.

Theorem 2. L is semimodular if and only if it is ranked, with a rank function r satisfying

$$
\begin{equation*}
r(x \vee y)+r(x \wedge y) \leq r(x)+r(y) \quad \forall x, y \in L \tag{3}
\end{equation*}
$$

Proof. Suppose that L is a ranked lattice with rank function r satisfying (3). If $x \wedge y \lessdot y$, then $x \vee y>x$ (otherwise $x \geq y$ and $x \wedge y=y$). On the other hand, $r(y)=r(x \wedge y)+1$, so by (3)

$$
r(x \vee y)-r(x) \leq r(y)-r(x \wedge y)=1
$$

which implies that in fact $x \vee y \gtrdot x$.
The hard direction is showing that a semimodular lattice has such a rank function. First, observe that if L is semimodular, then

$$
\begin{equation*}
x \wedge y \lessdot x, y \Longrightarrow x, y \lessdot x \vee y \tag{4}
\end{equation*}
$$

Denote by $c(L)$ the maximum length of a chain in L. We will show that L is ranked by induction on $c(L)$.
Base case: If $c(L)=0$ or $c(L)=1$, then this is trivial.
Inductive step: Suppose that $c(L)=n \geq 2$. Assume by induction that every semimodular lattice with no chain of length $c(L)$ has a rank function satisfying (3).

First, we show that L is ranked.
Let $\hat{0}=x_{0} \lessdot x_{1} \lessdot \cdots \lessdot x_{n-1} \lessdot x_{n}=\hat{1}$ be a chain of maximum length. Let $\hat{0}=y_{0} \lessdot y_{1} \lessdot \cdots \lessdot y_{m-1} \lessdot y_{m}=\hat{1}$ be any maxima chain in L. We wish to show that $m=n$.

Let $L^{\prime}=\left[x_{1}, \hat{1}\right]$ and $L^{\prime \prime}=\left[y_{1}, \hat{1}\right]$. By induction, these sublattices are both ranked. Moreover, $c\left(L^{\prime}\right)=n-1$.
If $x_{1}=y_{1}$ then we are done by induction, since the interval $L^{\prime}=\left[x_{1}, \hat{1}\right]$ is a lattice and $c\left(L^{\prime}\right)=n-1$. On the other hand, if $x_{1} \neq y_{1}$, then let $z_{1}=x_{1} \vee y_{1}$. By (4), z_{1} covers both x_{1} and y_{1}. Let $z_{1}, z_{2}, \ldots, \hat{1}$ be a maximal chain in L (thus, in $L^{\prime} \cap L^{\prime \prime}$).

[^0]

Since L^{\prime} is ranked and $z \gtrdot x_{1}$, the chain $z_{1}, \ldots, \hat{1}$ has length $n-2$. So the chain $y_{1}, z_{1}, \ldots, \hat{1}$ has length $n-1$.
On the other hand, $L^{\prime \prime}$ is ranked and $y_{1}, y_{2}, \ldots, \hat{1}$ is a maximal chain, so it also has length $n-1$. Therefore the chain $\hat{0}, y_{1}, \ldots, \hat{1}$ has length n as desired.

Second, we show that the rank function r of L satisfies (3).
Let $x, y \in L$ and take a maximal chain $x \wedge y=c_{0} \lessdot c_{1} \lessdot \cdots \lessdot c_{n-1} \lessdot c_{n}=x$. Note that $n=r(x)-r(x \wedge y)$. Then we have a chain

$$
y=c_{0} \vee y \leq c_{1} \vee y \leq \cdots \leq c_{n} \vee y=x \vee y
$$

By Lemma each \leq in this chain is either an equality or a covering relation. Therefore, the distinct elements $c_{i} \vee y$ form a maximal chain from y to $x \vee y$, whose length must be $\leq n$. Hence

$$
r(x \vee y)-r(y) \leq n=r(x)-r(x \wedge y)
$$

and so

$$
r(x \vee y)+r(x \wedge y) \leq n=r(x)+r(y)
$$

The same argument shows that L is lower semimodular if and only if it is ranked, with a rank function satisfying the reverse inequality of (3)

Theorem 3. L is modular if and only if it is ranked, with a rank function r satisfying

$$
\begin{equation*}
r(x \vee y)+r(x \wedge y)=r(x)+r(y) \quad \forall x, y \in L \tag{5}
\end{equation*}
$$

Proof. If L is modular, then it is both upper and lower semimodular, so the conclusion follows by Theorem 2
On the other hand, suppose that L has rank function r satisfying (5). Let $x \leq z \in L$. We already know that $x \vee(y \wedge z) \leq(x \vee y) \wedge z$. On the other hand,

$$
\begin{array}{rlr}
r(x \vee(y \wedge z)) & =r(x)+r(y \wedge z)-r(x \wedge y \wedge z) & \\
& =r(x)+r(y)+r(z)-r(y \vee z)-r(x \wedge y \wedge z) \\
& \geq r(x)+r(y)+r(z)-r(x \vee y \vee z)-r(x \wedge y) \\
& =r(x \vee y)+r(z)-r(x \vee y \vee z) \quad=r((x \vee y) \wedge z),
\end{array}
$$

implying (1).

Geometric Lattices

Recall that a lattice is atomic if every element is the join of atoms.
Definition 2. A lattice is geometric if it is (upper) semimodular and atomic.

The term "geometric" comes from the following construction. Let E be a finite set of nonzero vectors in a vector space V. Let

$$
L(E)=\{W \cap E \mid W \subseteq V \text { is a vector subspace }\}
$$

which is a poset under inclusion. In fact, $L(E)$ is a geometric lattice (homework problem). Its atoms are the singleton sets $\{\{s\} \mid s \in E\}$, and its rank function is $r(Z)=\operatorname{dim}\langle Z\rangle$, where $\langle Z\rangle$ denotes the linear span of the vectors in Z.

A closely related construction is the lattice

$$
L^{\text {aff }}(E)=\{W \cap E \mid W \subseteq V \text { is an affine subspace }\} .
$$

(An affine subspace of V is a translate of a vector subspace: for example, a line or plane not necessarily containing the origin.) In fact, any lattice of the form $L^{\text {aff }}(E)$ can be expressed in the form $L(\hat{E})$, where \hat{E} is a certain point set constructed from E (homework problem) However, the rank of $Z \in L^{\text {aff }}(E)$ is one more than the dimension of its affine span, making it more convenient to picture geometric lattices of rank 3.

Example 1. Let E be the point configuration on the left below. Then $L^{\text {aff }}(E)$ is the lattice on the right (which in this case is modular).

[^0]: *Remember that the length of a chain is the number of minimal relations in it, which is one less than its cardinality as a subset of L. So, for example, $c\left(\mathscr{B}_{n}\right)=n$, not $n+1$.
 ${ }^{\dagger}$ The terms "maximum" and "maximal" are not synonymous. "Maximum" means "of greatest possible cardinality", while "maximal" means "not contained in any other such object". In general, "maximum" is a stronger condition than "maximal".

