Wednesday 1/30/08

Modular Lattices

Definition: A lattice L is modular if for every $x, y, z \in L$ with $x \leq z$,

$$
\begin{equation*}
x \vee(y \wedge z)=(x \vee y) \wedge z \tag{1}
\end{equation*}
$$

(Note: For all lattices, if $x \leq z$, then $x \vee(y \wedge z) \leq(x \vee y) \wedge z$.)

Some basic facts and examples:

1. Every sublattice of a modular lattice is modular. Also, if L is distributive and $x \leq z \in L$, then

$$
x \vee(y \wedge z)=(x \wedge z) \vee(y \wedge z)=(x \vee y) \wedge z
$$

so L is modular.
2. L is modular if and only if L^{*} is modular. Unlike the corresponding statement for distributivity, this is completely trivial, because the definition of modularity is invariant under dualization.
3. N_{5} is not modular. With the labeling below, we have $a \leq b$, but

$$
\begin{aligned}
& a \vee(c \wedge b)=a \vee \hat{0}=a \\
& (a \vee c) \wedge b=\hat{1} \wedge b=b
\end{aligned}
$$

4. $M_{5} \cong \Pi_{3}$ is modular. However, Π_{4} is not modular (exercise).

Modular lattices tend to come up in algebraic settings:

- Subspaces of a vector space
- Subgroups of a group
- R-submodules of an R-module
E.g., if X, Y, Z are subspaces of a vector space V with $X \subseteq Z$, then the modularity condition says that

$$
X+(Y \cap Z)=(X+Y) \cap Z
$$

Proposition 1. Let L be a lattice. TFAE:

1. L is modular.
2. For all $x, y, z \in L$, if $x \in[y \wedge z, z]$, then $x=(x \vee y) \wedge z$.
2^{*}. For all $x, y, z \in L$, if $x \in[y, y \vee z]$, then $x=(x \wedge z) \vee y$.
3. For all $y, z \in L$, there is an isomorphism of lattices

$$
[y \wedge z, z] \rightarrow[y, y \vee z]
$$

given by $a \mapsto a \vee y, b \wedge z \leftarrow b$.

Proof. $\underline{(1) \Longrightarrow(2)}$ is easy: if we take the definition of modularity and assume in addition that $x \geq y \wedge z$, then the equation becomes $x=(x \vee y) \wedge z$.

For $\underline{(2) \Longrightarrow(1)}$, suppose that (2) holds. Let $X, Y, Z \in L$ with $X \leq Z$. Note that

$$
Y \wedge Z \leq X \vee(Y \wedge Z) \leq Z \vee Z=Z
$$

so applying (2) with $y=Y, z=Z, x=X \vee(Y \wedge Z)$ gives

$$
X \vee(Y \wedge Z)=((X \vee(Y \wedge Z)) \vee Y) \wedge Z=(X \vee Y) \wedge Z
$$

as desired.
$\underline{(2) \Longleftrightarrow\left(2^{*}\right)}$ because modularity is a self-dual condition.
Finally, (3) is equivalent to (2) and (2*) together.
Theorem 2. Let L be a lattice.
(1) L is modular if and only if it contains no sublattice isomorphic to N_{5}.
(2) L is distributive if and only if contains no sublattice isomorphic to N_{5} or M_{5}.

Proof. Both \Longrightarrow directions are easy, because N_{5} is not modular and M_{5} is not distributive.
Suppose that x, y, z is a triple for which modularity fails. One can check that

is a sublattice (details left to the reader).
Suppose that L is not distributive. If it isn't modular then it contains an N_{5}, so there's nothing to prove. If it is modular, then choose x, y, z such that

$$
x \wedge(y \vee z)>(x \wedge y) \vee(x \wedge z)
$$

You can then show that
(1) this inequality is invariant under permuting x, y, z;
(2) $[x \wedge(y \vee z)] \vee(y \wedge z)$ and the two other lattice elements obtained by permuting x, y, z form a cochain; and
(3) the join (resp. meet) of any of two of those three guys is equal.

Hence, we have constructed a sublattice of L isomorphic to M_{5}.

Semimodular Lattices

Definition: A lattice L is (upper) semimodular if for all $x, y \in L$,

$$
\begin{equation*}
x \wedge y \lessdot y \quad \Longrightarrow \quad x \lessdot x \vee y . \tag{2}
\end{equation*}
$$

Here's the idea. Consider the interval $[x \wedge y, x \vee y] \subset L$.

If L is semimodular, then the interval has the property that if the southeast relation is a cover, then so is the northwest relation.
L is lower semimodular if the converse of (2) holds for all $x, y \in L$.
Lemma 3. If L is modular then it is upper and lower semimodular.

Proof. If $x \wedge y \lessdot y$, then the sublattice $[x \wedge y, y]$ has only two elements. If L is modular, then by condition (3) of Proposition 1 we have $[x \wedge y, y] \cong[x, x \vee y]$, so $x \lessdot x \vee y$. Hence L is upper semimodular. A similar argument proves that L is lower smimodular.

In fact, upper and lower semimodularity together imply modularity. To make this more explicit, we will show that each of these three conditions on a lattice L implies that it is ranked, and moreover, for all $x, y \in L$, the rank function r satisfies

$$
\begin{array}{ll}
r(x \vee y)+r(x \wedge y) \leq r(x)+r(y) & \text { if } L \text { is upper semimodular; } \\
r(x \vee y)+r(x \wedge y) \geq r(x)+r(y) & \text { if } L \text { is lower semimodular; } \\
r(x \vee y)+r(x \wedge y)=r(x)+r(y) & \text { if } L \text { is modular. }
\end{array}
$$

