Wednesday 1/30/08

Modular Lattices

Definition: A lattice *L* is <u>modular</u> if for every $x, y, z \in L$ with $x \leq z$, (1) $x \lor (y \land z) = (x \lor y) \land z$.

(Note: For all lattices, if $x \leq z$, then $x \vee (y \wedge z) \leq (x \vee y) \wedge z$.)

Some basic facts and examples:

1. Every sublattice of a modular lattice is modular. Also, if L is distributive and $x \leq z \in L$, then

$$x \lor (y \land z) = (x \land z) \lor (y \land z) = (x \lor y) \land z,$$

so L is modular.

2. L is modular if and only if L^* is modular. Unlike the corresponding statement for distributivity, this is completely trivial, because the definition of modularity is invariant under dualization.

3. N_5 is not modular. With the labeling below, we have $a \leq b$, but

$$a \lor (c \land b) = a \lor 0 = a$$

 $(a \lor c) \land b = \hat{1} \land b = b$

4. $M_5 \cong \Pi_3$ is modular. However, Π_4 is not modular (exercise).

Modular lattices tend to come up in algebraic settings:

- Subspaces of a vector space
- Subgroups of a group
- *R*-submodules of an *R*-module

E.g., if X, Y, Z are subspaces of a vector space V with $X \subseteq Z$, then the modularity condition says that $X + (Y \cap Z) = (X + Y) \cap Z$.

Proposition 1. Let L be a lattice. TFAE:

- 1. L is modular.
- 2. For all $x, y, z \in L$, if $x \in [y \land z, z]$, then $x = (x \lor y) \land z$.
- 2^{*}. For all $x, y, z \in L$, if $x \in [y, y \lor z]$, then $x = (x \land z) \lor y$.
- 3. For all $y, z \in L$, there is an isomorphism of lattices

$$[y \land z, z] \rightarrow [y, y \lor z]$$

given by $a \mapsto a \lor y$, $b \land z \leftarrow b$.

Proof. (1) \implies (2) is easy: if we take the definition of modularity and assume in addition that $x \ge y \land z$, then the equation becomes $x = (x \lor y) \land z$.

For (2) \implies (1), suppose that (2) holds. Let $X, Y, Z \in L$ with $X \leq Z$. Note that

$$Y \wedge Z \le X \vee (Y \wedge Z) \le Z \vee Z = Z,$$

so applying (2) with y = Y, z = Z, $x = X \vee (Y \wedge Z)$ gives

$$X \lor (Y \land Z) = ((X \lor (Y \land Z)) \lor Y) \land Z = (X \lor Y) \land Z$$

as desired.

(2) \iff (2^{*}) because modularity is a self-dual condition.

Finally, (3) is equivalent to (2) and (2^*) together.

Theorem 2. Let L be a lattice.

- (1) L is modular if and only if it contains no sublattice isomorphic to N_5 .
- (2) L is distributive if and only if it contains no sublattice isomorphic to N_5 or M_5 .

Proof. Both \implies directions are easy, because N_5 is not modular and M_5 is not distributive. Suppose that x, y, z is a triple for which modularity fails. One can check that

is a sublattice (details left to the reader).

Suppose that L is not distributive. If it isn't modular then it contains an N_5 , so there's nothing to prove. If it is modular, then choose x, y, z such that

$$x \land (y \lor z) > (x \land y) \lor (x \land z).$$

You can then show that

- (1) this inequality is invariant under permuting x, y, z;
- (2) $[x \land (y \lor z)] \lor (y \land z)$ and the two other lattice elements obtained by permuting x, y, z form a cochain; and
- (3) the join (resp. meet) of any of two of those three guys is equal.

Hence, we have constructed a sublattice of L isomorphic to M_5 .

Semimodular Lattices

Definition: A lattice L is <u>(upper)</u> semimodular if for all $x, y \in L$, (2) $x \land y \lessdot y \implies x \lessdot x \lor y$.

Here's the idea. Consider the interval $[x \land y, x \lor y] \subset L$.

If L is semimodular, then the interval has the property that if the southeast relation is a cover, then so is the northwest relation.

L is <u>lower semimodular</u> if the converse of (2) holds for all $x, y \in L$.

Lemma 3. If L is modular then it is upper and lower semimodular.

Proof. If $x \land y \lt y$, then the sublattice $[x \land y, y]$ has only two elements. If L is modular, then by condition (3) of Proposition 1 we have $[x \land y, y] \cong [x, x \lor y]$, so $x \lt x \lor y$. Hence L is upper semimodular. A similar argument proves that L is lower smimodular. \Box

In fact, upper and lower semimodularity together imply modularity. To make this more explicit, we will show that each of these three conditions on a lattice L implies that it is ranked, and moreover, for all $x, y \in L$, the rank function r satisfies

$r(x \lor y) + r(x \land y) \le r(x) + r(y)$	if L is upper semimodular;
$r(x \lor y) + r(x \land y) \ge r(x) + r(y)$	if L is lower semimodular;
$r(x \lor y) + r(x \land y) = r(x) + r(y)$	if L is modular.