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Modular Lattices

Definition: A lattice L is modular if for every x, y, z ∈ L with x ≤ z,

(1) x ∨ (y ∧ z) = (x ∨ y) ∧ z.

(Note: For all lattices, if x ≤ z, then x ∨ (y ∧ z) ≤ (x ∨ y) ∧ z.)

Some basic facts and examples:

1. Every sublattice of a modular lattice is modular. Also, if L is distributive and x ≤ z ∈ L, then

x ∨ (y ∧ z) = (x ∧ z) ∨ (y ∧ z) = (x ∨ y) ∧ z,

so L is modular.

2. L is modular if and only if L∗ is modular. Unlike the corresponding statement for distributivity, this is
completely trivial, because the definition of modularity is invariant under dualization.

3. N5 is not modular. With the labeling below, we have a ≤ b, but

a ∨ (c ∧ b) = a ∨ 0̂ = a,

(a ∨ c) ∧ b = 1̂ ∧ b = b.
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4. M5
∼= Π3 is modular. However, Π4 is not modular (exercise).

Modular lattices tend to come up in algebraic settings:

• Subspaces of a vector space
• Subgroups of a group
• R-submodules of an R-module

E.g., if X, Y, Z are subspaces of a vector space V with X ⊆ Z, then the modularity condition says that

X + (Y ∩ Z) = (X + Y ) ∩ Z.

Proposition 1. Let L be a lattice. TFAE:

1. L is modular.

2. For all x, y, z ∈ L, if x ∈ [y ∧ z, z], then x = (x ∨ y) ∧ z.

2∗. For all x, y, z ∈ L, if x ∈ [y, y ∨ z], then x = (x ∧ z) ∨ y.

3. For all y, z ∈ L, there is an isomorphism of lattices

[y ∧ z, z]→ [y, y ∨ z]

given by a 7→ a ∨ y, b ∧ z ← b.



Proof. (1) =⇒ (2) is easy: if we take the definition of modularity and assume in addition that x ≥ y ∧ z,

then the equation becomes x = (x ∨ y) ∧ z.

For (2) =⇒ (1), suppose that (2) holds. Let X, Y, Z ∈ L with X ≤ Z. Note that

Y ∧ Z ≤ X ∨ (Y ∧ Z) ≤ Z ∨ Z = Z,

so applying (2) with y = Y , z = Z, x = X ∨ (Y ∧ Z) gives

X ∨ (Y ∧ Z) =
(

(X ∨ (Y ∧ Z)) ∨ Y
)

∧ Z = (X ∨ Y ) ∧ Z

as desired.

(2) ⇐⇒ (2∗) because modularity is a self-dual condition.

Finally, (3) is equivalent to (2) and (2∗) together. �

Theorem 2. Let L be a lattice.

(1) L is modular if and only if it contains no sublattice isomorphic to N5.

(2) L is distributive if and only if it contains no sublattice isomorphic to N5 or M5.

Proof. Both =⇒ directions are easy, because N5 is not modular and M5 is not distributive.

Suppose that x, y, z is a triple for which modularity fails. One can check that
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is a sublattice (details left to the reader).

Suppose that L is not distributive. If it isn’t modular then it contains an N5, so there’s nothing to prove. If
it is modular, then choose x, y, z such that

x ∧ (y ∨ z) > (x ∧ y) ∨ (x ∧ z).

You can then show that

(1) this inequality is invariant under permuting x, y, z;
(2) [x∧ (y∨z)]∨ (y∧z) and the two other lattice elements obtained by permuting x, y, z form a cochain;

and
(3) the join (resp. meet) of any of two of those three guys is equal.

Hence, we have constructed a sublattice of L isomorphic to M5. �



Semimodular Lattices

Definition: A lattice L is (upper) semimodular if for all x, y ∈ L,

(2) x ∧ y l y =⇒ x l x ∨ y.

Here’s the idea. Consider the interval [x ∧ y, x ∨ y] ⊂ L.
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If L is semimodular, then the interval has the property that if the southeast relation is a cover, then so is
the northwest relation.

L is lower semimodular if the converse of (2) holds for all x, y ∈ L.

Lemma 3. If L is modular then it is upper and lower semimodular.

Proof. If x∧y ly, then the sublattice [x∧y, y] has only two elements. If L is modular, then by condition (3)
of Proposition 1 we have [x ∧ y, y] ∼= [x, x ∨ y], so x l x ∨ y. Hence L is upper semimodular. A similar
argument proves that L is lower smimodular. �

In fact, upper and lower semimodularity together imply modularity. To make this more explicit, we will show
that each of these three conditions on a lattice L implies that it is ranked, and moreover, for all x, y ∈ L,
the rank function r satisfies

r(x ∨ y) + r(x ∧ y) ≤ r(x) + r(y) if L is upper semimodular;

r(x ∨ y) + r(x ∧ y) ≥ r(x) + r(y) if L is lower semimodular;

r(x ∨ y) + r(x ∧ y) = r(x) + r(y) if L is modular.


