Friday 1/25/08

Lattices

Definition: A poset L is a <u>lattice</u> if every finite subset of $x, y \in L$ have a unique <u>meet</u> $x \wedge y$ and <u>join</u> $x \vee y$. That is,

$$x \wedge y = \max\{z \in L \mid z \le x, y\},\$$

$$x \vee y = \min\{z \in L \mid z > x, y\}.$$

Note that, e.g., $x \wedge y = x$ if and only if $x \leq y$. These operations are commutative and associative, so for any finite $M \subset L$, the meet $\wedge M$ and join $\vee M$ are well-defined elements of L. In particular, every finite lattice is bounded (with $\hat{0} = \wedge L$ and $\hat{1} = \vee L$).

Proposition 1 (Absorption laws). Let L be a lattice and $x, y \in L$. Then $x \lor (x \land y) = x$ and $x \land (x \lor y) = x$. (Proof left to the reader.)

Proposition 2. Let P be a poset that is a meet-semilattice (i.e., every nonempty $B \subseteq P$ has a well-defined meet $\wedge B$) and has a $\hat{1}$. Then P is a lattice (i.e., every finite nonempty subset of P has a well-defined join).

Proof. Let $A \subseteq P$, and let $B = \{b \in P \mid b \ge a \text{ for all } a \in A\}$. Note that $B \ne \emptyset$ because $\hat{1} \in B$. I claim that $\land B$ is the unique least upper bound for A. First, we have $\land B \ge a$ for all $a \in A$ by definition of B and of meet. Second, if $x \ge a$ for all $a \in A$, then $x \in B$ and so $x \ge \land B$, proving the claim. \Box

Definition 1. Let L be a lattice. A sublattice of L is a subposet $L' \subset L$ that (a) is a lattice and (b) inherits its meet and join operations from L. That is, for all $x, y \in L'$, we have

$$x \wedge_{L'} y = x \wedge_L y$$
 and $x \vee_{L'} y = x \vee_L y$.

Example 1 (The subspace lattice). Let q be a prime power, let \mathbb{F}_q be the field of order q, and let $V = \mathbb{F}_q^n$ (a vector space of dimension n over \mathbb{F}_q). The subspace lattice $L_V(q) = L_n(q)$ is the set of all vector subspaces of V, ordered by inclusion. (We could replace \mathbb{F}_q with any old field if you don't mind infinite posets.)

The meet and join operations on $L_n(q)$ are given by $W \wedge W' = W \cap W'$ and $W \vee W' = W + W'$. We could construct analogous posets by ordering the (normal) subgroups of a group, or the prime ideals of a ring, or the submodules of a module, by inclusion. (However, these posets are not necessarily ranked, while $L_n(q)$ is ranked, by dimension.)

The simplest example is when q = 2 and n = 2, so that $V = \{(0,0), (0,1), (1,0), (1,1)\}$. Of course V has one subspace of dimension 2 (itself) and one of dimension 0 (the zero space). Meanwhile, it has three subspaces of dimension 1; each consists of the zero vector and one nonzero vector. Therefore, $L_2(2) \cong M_5$.

Note that $L_n(q)$ is self-dual, under the anti-automorphism $W \to W^{\perp}$. (An *anti-automorphism* is an isomorphism $P \to P^*$.)

Example 2 (Bruhat order and weak Bruhat order). Let \mathfrak{S}_n be the set of permutations of [n] (i.e., the symmetric group). Write elements of \mathfrak{S}_n as strings $\sigma_1 \sigma_2 \cdots \sigma_n$ of distinct digits, e.g., $47182635 \in \mathfrak{S}_8$. Impose a partial order on \mathfrak{S}_n defined by the following covering relations:

(1) $\sigma \leq \sigma'$ if σ' can be obtained by swapping σ_i with σ_{i+1} , where $\sigma_i < \sigma_{i+1}$. For example,

 $47182635 \le 47186235$ and $47182635 \ge 41782635$.

(2) $\sigma \leq \sigma'$ if σ' can be obtained by swapping σ_i with σ_j , where i < j and $\sigma_j = \sigma_i + 1$. For example, $4718\underline{2635} \leq 4718\underline{3625}$.

If we only use the first kind of covering relation, we obtain the <u>weak Bruhat order</u>.

The Bruhat order is not in general a lattice, while the weak order is (although this fact is nontrivial). By the way, we could replace \mathfrak{S}_n with any Coxeter group (although that's a whole 'nother semester).

Both posets are graded and self-dual, and have the same rank function, namely the number of **inversions**:

$$r(\sigma) = \left| \left\{ \{i, j\} \mid i < j \text{ and } \sigma_i > \sigma_j \right\} \right|.$$

The rank-generating function is a very nice polynomial called the **q-factorial**:

$$F_{\mathfrak{S}_n}(q) = 1(1+q)(1+q+q^2)\cdots(1+q+\cdots+q^{n-1}) = \prod_{i=1}^n \frac{1-q^i}{1-q}.$$

Distributive Lattices

Definition: A lattice *L* is <u>distributive</u> if the following two equivalent conditions hold:

$$\begin{split} x \wedge (y \vee z) &= (x \wedge y) \vee (x \wedge z) \qquad \forall x, y, z \in L, \\ x \vee (y \wedge z) &= (x \vee y) \wedge (x \vee z) \qquad \forall x, y, z \in L. \end{split}$$

(Proving that these conditions are equivalent is not too hard but is not trivial; it's a homework problem.)

- (1) The Boolean algebra \mathscr{B}_n is a distributive lattice, because the set-theoretic operations of union and intersection are distributive over each other.
- (2) M_5 and N_5 are not distributive:

$$(a \lor c) \land b = b \qquad (x \lor y) \land z = z$$
$$(a \land b) \lor (a \land c) = a \qquad (x \land z) \lor (y \land z) = \hat{0}$$

In particular, the partition lattice Π_n is not distributive for $n \geq 3$ (recall that $\Pi_3 \cong M_5$).

- (3) Any sublattice of a distributive lattice is distributive. In particular, Young's lattice Y is distributive because it is locally a sublattice of \mathscr{B}_n .
- (4) The set D_n of all positive integer divisors of a fixed integer n, ordered by divisibility, is a distributive lattice (proof for homework).

Definition: Let P be a poset. An (order) ideal of P is a set $A \subseteq P$ that is closed under going down, i.e., if $x \in A$ and $y \leq x$ then $y \in A$. The poset of all order ideals of P (ordered by containment) is denoted J(P). The order ideal generated by $x_1, \ldots, x_n \in P$ is the smallest order ideal containing them, namely

 $\langle x_1, \dots, x_n \rangle := \{ y \in P \mid y \le x_i \text{ for some } i \}.$

By the way, there is a natural bijection between J(P) and the set of antichains of P, since the maximal elements of any order ideal A form an antichain that generates it.

Proposition: The operations $A \vee B = A \cup B$ and $A \wedge B = A \cap B$ make J(P) into a distributive lattice, partially ordered by set containment.

Sketch of proof: All you have to do is check that $A \cup B$ and $A \cap B$ are in fact order ideals of P. Then J(P) is just a sublattice of the Boolean algebra on P.