Friday 1/25/08

Lattices

Definition: A poset L is a lattice if every finite subset of $x, y \in L$ have a unique meet $x \wedge y$ and $\underline{\text { join }}$ $x \vee y$. That is,

$$
\begin{aligned}
& x \wedge y=\max \{z \in L \mid z \leq x, y\} \\
& x \vee y=\min \{z \in L \mid z \geq x, y\}
\end{aligned}
$$

Note that, e.g., $x \wedge y=x$ if and only if $x \leq y$. These operations are commutative and associative, so for any finite $M \subset L$, the meet $\wedge M$ and join $\vee M$ are well-defined elements of L. In particular, every finite lattice is bounded (with $\hat{0}=\wedge L$ and $\hat{1}=\vee L$).

Proposition 1 (Absorption laws). Let L be a lattice and $x, y \in L$. Then $x \vee(x \wedge y)=x$ and $x \wedge(x \vee y)=x$. (Proof left to the reader.)

Proposition 2. Let P be a poset that is a meet-semilattice (i.e., every nonempty $B \subseteq P$ has a well-defined meet $\wedge B$) and has a $\hat{1}$. Then P is a lattice (i.e., every finite nonempty subset of P has a well-defined join).

Proof. Let $A \subseteq P$, and let $B=\{b \in P \mid b \geq a$ for all $a \in A\}$. Note that $B \neq \emptyset$ because $\hat{1} \in B$. I claim that $\wedge B$ is the unique least upper bound for A. First, we have $\wedge B \geq a$ for all $a \in A$ by definition of B and of meet. Second, if $x \geq a$ for all $a \in A$, then $x \in B$ and so $x \geq \wedge B$, proving the claim.

Definition 1. Let L be a lattice. A sublattice of L is a subposet $L^{\prime} \subset L$ that (a) is a lattice and (b) inherits its meet and join operations from L. That is, for all $x, y \in L^{\prime}$, we have

$$
x \wedge_{L^{\prime}} y=x \wedge_{L} y \quad \text { and } \quad x \vee_{L^{\prime}} y=x \vee_{L} y
$$

Example 1 (The subspace lattice). Let q be a prime power, let \mathbb{F}_{q} be the field of order q, and let $V=\mathbb{F}_{q}^{n}$ (a vector space of dimension n over \mathbb{F}_{q}). The subspace lattice $L_{V}(q)=L_{n}(q)$ is the set of all vector subspaces of V, ordered by inclusion. (We could replace \mathbb{F}_{q} with any old field if you don't mind infinite posets.)

The meet and join operations on $L_{n}(q)$ are given by $W \wedge W^{\prime}=W \cap W^{\prime}$ and $W \vee W^{\prime}=W+W^{\prime}$. We could construct analogous posets by ordering the (normal) subgroups of a group, or the prime ideals of a ring, or the submodules of a module, by inclusion. (However, these posets are not necessarily ranked, while $L_{n}(q)$ is ranked, by dimension.)

The simplest example is when $q=2$ and $n=2$, so that $V=\{(0,0),(0,1),(1,0),(1,1)\}$. Of course V has one subspace of dimension 2 (itself) and one of dimension 0 (the zero space). Meanwhile, it has three subspaces of dimension 1 ; each consists of the zero vector and one nonzero vector. Therefore, $L_{2}(2) \cong M_{5}$.

Note that $L_{n}(q)$ is self-dual, under the anti-automorphism $W \rightarrow W^{\perp}$. (An anti-automorphism is an isomorphism $P \rightarrow P^{*}$.)

Example 2 (Bruhat order and weak Bruhat order). Let \mathfrak{S}_{n} be the set of permutations of [n] (i.e., the symmetric group). Write elements of \mathfrak{S}_{n} as strings $\sigma_{1} \sigma_{2} \cdots \sigma_{n}$ of distinct digits, e.g., $47182635 \in \mathfrak{S}_{8}$. Impose a partial order on \mathfrak{S}_{n} defined by the following covering relations:
(1) $\sigma \lessdot \sigma^{\prime}$ if σ^{\prime} can be obtained by swapping σ_{i} with σ_{i+1}, where $\sigma_{i}<\sigma_{i+1}$. For example,

$$
4718 \underline{26} 35 \lessdot 4718 \underline{62} 35 \text { and } 4 \underline{71} 82635 \gtrdot 4 \underline{17} 82635 .
$$

(2) $\sigma \lessdot \sigma^{\prime}$ if σ^{\prime} can be obtained by swapping σ_{i} with σ_{j}, where $i<j$ and $\sigma_{j}=\sigma_{i}+1$. For example,

$$
4718 \underline{2} 6 \underline{3} 5 \lessdot 4718 \underline{3} 6 \underline{2} 5 .
$$

If we only use the first kind of covering relation, we obtain the weak Bruhat order.

Bruhat order

Weak Bruhat order

The Bruhat order is not in general a lattice, while the weak order is (although this fact is nontrivial). By the way, we could replace \mathfrak{S}_{n} with any Coxeter group (although that's a whole 'nother semester).

Both posets are graded and self-dual, and have the same rank function, namely the number of inversions:

$$
r(\sigma)=\mid\left\{\{i, j\} \mid i<j \text { and } \sigma_{i}>\sigma_{j}\right\} \mid .
$$

The rank-generating function is a very nice polynomial called the $\underline{q-f a c t o r i a l: ~}$

$$
F_{\mathfrak{S}_{n}}(q)=1(1+q)\left(1+q+q^{2}\right) \cdots\left(1+q+\cdots+q^{n-1}\right)=\prod_{i=1}^{n} \frac{1-q^{i}}{1-q}
$$

Distributive Lattices

Definition: A lattice L is distributive if the following two equivalent conditions hold:

$$
\begin{array}{ll}
x \wedge(y \vee z)=(x \wedge y) \vee(x \wedge z) & \forall x, y, z \in L \\
x \vee(y \wedge z)=(x \vee y) \wedge(x \vee z) & \forall x, y, z \in L
\end{array}
$$

(Proving that these conditions are equivalent is not too hard but is not trivial; it's a homework problem.)
(1) The Boolean algebra \mathscr{B}_{n} is a distributive lattice, because the set-theoretic operations of union and intersection are distributive over each other.
(2) M_{5} and N_{5} are not distributive:

$$
\begin{array}{r}
(x \vee y) \wedge z=z \\
(x \wedge z) \vee(y \wedge z)=\hat{0}
\end{array}
$$

In particular, the partition lattice Π_{n} is not distributive for $n \geq 3$ (recall that $\Pi_{3} \cong M_{5}$).
(3) Any sublattice of a distributive lattice is distributive. In particular, Young's lattice Y is distributive because it is locally a sublattice of \mathscr{B}_{n}.
(4) The set D_{n} of all positive integer divisors of a fixed integer n, ordered by divisibility, is a distributive lattice (proof for homework).

Definition: Let P be a poset. An (order) ideal of P is a set $A \subseteq P$ that is closed under going down, i.e., if $x \in A$ and $y \leq x$ then $y \in A$. The poset of all order ideals of P (ordered by containment) is denoted $J(P)$. The order ideal generated by $x_{1}, \ldots, x_{n} \in P$ is the smallest order ideal containing them, namely

$$
\left\langle x_{1}, \ldots, x_{n}\right\rangle:=\left\{y \in P \mid y \leq x_{i} \text { for some } i\right\}
$$

By the way, there is a natural bijection between $J(P)$ and the set of antichains of P, since the maximal elements of any order ideal A form an antichain that generates it.

Proposition: The operations $A \vee B=A \cup B$ and $A \wedge B=A \cap B$ make $J(P)$ into a distributive lattice, partially ordered by set containment.

Sketch of proof: All you have to do is check that $A \cup B$ and $A \cap B$ are in fact order ideals of P. Then $J(P)$ is just a sublattice of the Boolean algebra on P.

