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Lattices

Definition: A poset L is a lattice if every finite subset of x, y ∈ L have a unique meet x ∧ y and join
x ∨ y. That is,

x ∧ y = max{z ∈ L | z ≤ x, y},

x ∨ y = min{z ∈ L | z ≥ x, y}.

Note that, e.g., x∧ y = x if and only if x ≤ y. These operations are commutative and associative, so for any
finite M ⊂ L, the meet ∧M and join ∨M are well-defined elements of L. In particular, every finite lattice
is bounded (with 0̂ = ∧L and 1̂ = ∨L).

Proposition 1 (Absorption laws). Let L be a lattice and x, y ∈ L. Then x∨(x∧y) = x and x∧(x∨y) = x.
(Proof left to the reader.)

Proposition 2. Let P be a poset that is a meet-semilattice (i.e., every nonempty B ⊆ P has a well-defined

meet ∧B) and has a 1̂. Then P is a lattice (i.e., every finite nonempty subset of P has a well-defined join).

Proof. Let A ⊆ P , and let B = {b ∈ P | b ≥ a for all a ∈ A}. Note that B 6= ∅ because 1̂ ∈ B. I claim that
∧B is the unique least upper bound for A. First, we have ∧B ≥ a for all a ∈ A by definition of B and of
meet. Second, if x ≥ a for all a ∈ A, then x ∈ B and so x ≥ ∧B, proving the claim. �

Definition 1. Let L be a lattice. A sublattice of L is a subposet L′ ⊂ L that (a) is a lattice and (b) inherits
its meet and join operations from L. That is, for all x, y ∈ L′, we have

x ∧L′ y = x ∧L y and x ∨L′ y = x ∨L y.

Example 1 (The subspace lattice). Let q be a prime power, let Fq be the field of order q, and let V = Fn
q

(a vector space of dimension n over Fq). The subspace lattice LV (q) = Ln(q) is the set of all vector subspaces
of V , ordered by inclusion. (We could replace Fq with any old field if you don’t mind infinite posets.)

The meet and join operations on Ln(q) are given by W ∧W ′ = W ∩W ′ and W ∨ W ′ = W + W ′. We could
construct analogous posets by ordering the (normal) subgroups of a group, or the prime ideals of a ring, or
the submodules of a module, by inclusion. (However, these posets are not necessarily ranked, while Ln(q) is
ranked, by dimension.)

The simplest example is when q = 2 and n = 2, so that V = {(0, 0), (0, 1), (1, 0), (1, 1)}. Of course V has one
subspace of dimension 2 (itself) and one of dimension 0 (the zero space). Meanwhile, it has three subspaces
of dimension 1; each consists of the zero vector and one nonzero vector. Therefore, L2(2) ∼= M5.

Note that Ln(q) is self-dual, under the anti-automorphism W → W⊥. (An anti-automorphism is an isomor-
phism P → P ∗.)

Example 2 (Bruhat order and weak Bruhat order). Let Sn be the set of permutations of [n] (i.e.,
the symmetric group). Write elements of Sn as strings σ1σ2 · · ·σn of distinct digits, e.g., 47182635 ∈ S8.
Impose a partial order on Sn defined by the following covering relations:

(1) σ l σ′ if σ′ can be obtained by swapping σi with σi+1, where σi < σi+1. For example,

47182635 l 47186235 and 47182635 m 41782635.



(2) σ l σ′ if σ′ can be obtained by swapping σi with σj , where i < j and σj = σi + 1. For example,

47182635 l 47183625.

If we only use the first kind of covering relation, we obtain the weak Bruhat order.
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The Bruhat order is not in general a lattice, while the weak order is (although this fact is nontrivial). By
the way, we could replace Sn with any Coxeter group (although that’s a whole ’nother semester).

Both posets are graded and self-dual, and have the same rank function, namely the number of inversions:
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The rank-generating function is a very nice polynomial called the q-factorial:

FSn
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Distributive Lattices

Definition: A lattice L is distributive if the following two equivalent conditions hold:

x ∧ (y ∨ z) = (x ∧ y) ∨ (x ∧ z) ∀x, y, z ∈ L,

x ∨ (y ∧ z) = (x ∨ y) ∧ (x ∨ z) ∀x, y, z ∈ L.

(Proving that these conditions are equivalent is not too hard but is not trivial; it’s a homework problem.)

(1) The Boolean algebra Bn is a distributive lattice, because the set-theoretic operations of union and
intersection are distributive over each other.

(2) M5 and N5 are not distributive:
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(a ∨ c) ∧ b = b (x ∨ y) ∧ z = z

(a ∧ b) ∨ (a ∧ c) = a (x ∧ z) ∨ (y ∧ z) = 0̂



In particular, the partition lattice Πn is not distributive for n ≥ 3 (recall that Π3
∼= M5).

(3) Any sublattice of a distributive lattice is distributive. In particular, Young’s lattice Y is distributive
because it is locally a sublattice of Bn.

(4) The set Dn of all positive integer divisors of a fixed integer n, ordered by divisibility, is a distributive
lattice (proof for homework).

Definition: Let P be a poset. An (order) ideal of P is a set A ⊆ P that is closed under going down, i.e.,

if x ∈ A and y ≤ x then y ∈ A. The poset of all order ideals of P (ordered by containment) is denoted J(P ).
The order ideal generated by x1, . . . , xn ∈ P is the smallest order ideal containing them, namely

〈x1, . . . , xn〉 :=
{

y ∈ P | y ≤ xi for some i
}

.

By the way, there is a natural bijection between J(P ) and the set of antichains of P , since the maximal
elements of any order ideal A form an antichain that generates it.
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Proposition: The operations A ∨ B = A ∪ B and A ∧ B = A ∩ B make J(P ) into a distributive lattice,
partially ordered by set containment.

Sketch of proof: All you have to do is check that A ∪B and A ∩B are in fact order ideals of P . Then J(P )
is just a sublattice of the Boolean algebra on P . �


