Wednesday $1 / 23 / 08$

Posets: More Examples

Example 1 (Young's lattice.). A partition is a sequence $\lambda=\left(\lambda_{1}, \ldots, \lambda_{\ell}\right)$ of weakly decreasing positive integers: i.e., $\lambda_{1} \geq \cdots \geq \lambda_{\ell}>0$. For convenience, set $\lambda_{i}=0$ for all $i>\ell$. Let Y be the set of all partitions, partially ordered by $\lambda \geq \mu$ if $\lambda_{i} \geq \mu_{i}$ for all $i=1,2, \ldots$.

This is an infinite poset, but it is locally finite, i.e., every interval is finite.
There's a nice pictorial way to look at Young's lattice. Instead of thinking about partitions as sequence of numbers, view them as their corresponding Ferrers diagrams: northwest-justified piles of boxes whose $i^{t h}$ row contains λ_{i} boxes. For example, 5542 is represented by the following Ferrers diagram:

Then $\lambda \geq \mu$ if and only the Ferrers diagram of λ contains that of μ. The top part of the Hasse diagram of Y looks like this:

Definition: An isomorphism of posets P, Q is a bijection $f: P \rightarrow Q$ such that $x \leq y$ if and only if $f(x) \leq f(y)$. We say that P and Q are isomorphic, written $P \cong Q$, if there is an isomorphism $P \rightarrow Q$. An automorphism is an isomorphism from a poset to itself.

Young's lattice Y has a nontrivial automorphism given by conjugation. This is most easily described in terms of Ferrers diagrams (reverse the roles of rows and columns). It is easy to check that if $\lambda \geq \mu$, then $\lambda^{\prime} \geq \mu^{\prime}$, where the prime denites conjugation.
Example 2 (The clique poset of a graph). Let $G=(V, E)$ be a graph with vertex set [n]. A clique of G is a set of vertices that are pairwise adjacent. Let $K(G)$ be the poset consisting of set partitions all of whose blocks are cliques in G, ordered by refinement.

This is a subposet of Π_{n} : a subset of Π_{n} that inherits its order relation This poset is ranked but not graded, since there is not necessarily a $\hat{1}$. Notice that $\Pi_{n}=K\left(K_{n}\right)$ (the complete graph on n vertices).

Lattices

Definition: A poset L is a lattice if every $x, y \in L$ have a unique meet $x \wedge y$ and $\underline{\text { join }} x \vee y$. That is,

$$
\begin{aligned}
& x \wedge y=\max \{z \in L \mid z \leq x, y\} \\
& x \vee y=\min \{z \in L \mid z \geq x, y\}
\end{aligned}
$$

Note that, e.g., $x \wedge y=x$ if and only if $x \leq y$. These operations are commutative and associative, so for any finite $M \subset L$, the meet $\wedge M$ and join $\vee M$ are well-defined elements of L. In particular, every finite lattice is bounded (with $\hat{0}=\wedge L$ and $\hat{1}=\vee L$).
Example 3. The Boolean algebra \mathscr{B}_{n} is a lattice, with $S \wedge T=S \cap T$ and $S \vee T=S \cup T$.
Example 4. The complete graded poset $P\left(a_{1}, \ldots, a_{n}\right)$ has $r(\hat{1})=n+1$ and $a_{i}>0$ elements at rank i for every $i>0$, with every possible order relation (i.e., $r(x)>r(y) \Longrightarrow x>y$).

This is a lattice if and only if no two consecutive a_{i} 's are 2 or greater.
Example 5. The clique poset $K(G)$ of a graph G is in general not a lattice, because join is not well-defined. Meet, however, is well-defined. One could therefore call the clique poset a meet-semilattice. It can be made into a lattice by adjoining a brand-new $\hat{1}$ element. In the case that $\overline{G=K_{n}}$, the clique poset is a lattice, namely the partition lattice Π_{n}.

Example 6. Lattices don't have to be ranked. For example, the poset N_{5} is a perfectly good lattice.

