Problem: Find a maximum matching in a given X, Y-bigraph G.

- König-Egerváry Theorem: $\alpha^{\prime}(G)=\beta(G)$, where $\alpha^{\prime}=$ size of a maximum matching, $\beta=$ size of a minimum vertex cover
(In general $\alpha^{\prime} \leq \beta$ ("weak duality"), with equality ("strong duality") for bipartite graphs).
- Berge's Theorem: A matching M is maximum if and only if G has no M-augmenting path.

Given a matching M, construct an orientation $D=D(M)$ of G by orienting each edge of M from Y to X, and orienting each edge of $E(G)-M$ from X to Y.
$\underline{M \text {-alternating path in } G=\text { path in } D}$
$\underline{M \text {-augmenting path in } G=\text { path in } D \text { from } X-V(M) \text { to } Y-V(M), ~(1) ~}$

```
Augmenting Path Algorithm
Input: an X,Y-bigraph G and a matching M
repeat
{
    X' := X - V (M)
    Y':= Y-V(M)
    A := {all vertices reachable from }\mp@subsup{X}{}{\prime}\mathrm{ in }D
    If }A\cap\mp@subsup{Y}{}{\prime}\mathrm{ is nonempty, we have an augmenting path P;
    set M=M\triangleP
}
until }A=
```

We can compute A using Dijkstra's algorithm (really just breadth-first search). Essentially, compute the set of all vertices of D reachable from a vertex in $X-V(M)$.
(You can use Dijkstra's algorithm itself (for digraphs) to find the vertices of D reachable from each M-unsaturated vertex in X, one by one, then take the union of all such vertex sets found. This can be made more efficient - see West for details.)

Example. Suppose that M starts out like this.

$y_{3} \in A . P$ here is one edge: $P=x_{2}, y_{3}$
So M is not maximum. Replace it with $M \triangle P$ (in this case, $M \cup P$):

$$
X^{\prime}=\left\{x_{3}, x_{7}\right\} ; \quad Y^{\prime}=\left\{y_{2}, y_{5}\right\}
$$

Again, BFS will turn up an augmenting path, possibly $P=x_{3}, y_{4}, x_{4}, y_{5}$.

At this point, BFS will not find an augmenting path and the algorithm terminates, with

$$
A=\underbrace{\left\{x_{1}, x_{2}, x_{3}, x_{5}, x_{7}, x_{8}\right\}}_{A_{X}} \cup \underbrace{\left\{y_{1}, y_{3}, y_{4}, y_{6}, y_{8}\right\}}_{A_{Y}}
$$

Every vertex in A_{X} has all of its neighbors in A_{Y}, i.e.,

$$
N\left(A_{X}\right) \subset A_{Y}
$$

That is,

$$
Q=A_{Y} \cap\left(X-A_{X}\right)
$$

is a vertex cover.

Every vertex of Q is M-saturated. (If $y \in A_{Y}$ is unsaturated then the path to it is M-augmenting, and A_{X} contains all the unsaturated vertices of X.)

No edge of M has more than one endpoint in Q. (If $y \in A_{Y}$ then $\operatorname{sp}(y) \in A_{X}$.)
Therefore $|Q| \leq|M|$.

