Math 724, Fall 2017
 Sample LaTeX File

For best results, download the .tex file and compare it to the .pdf output.
Theorem 0.1. Let $n \in \mathbb{N}$. Then

$$
\begin{equation*}
\sum_{k=1}^{n} k=\frac{n(n+1)}{2} . \tag{1}
\end{equation*}
$$

Proof. We proceed by induction on n. The base case $n=1$ is obvious ${ }^{1}$
For the inductive step, suppose that $1 \mathbb{1}$ holds for some $n \in \mathbb{N}$. We want to show that it holds for $n+1$, i.e., that $\sum_{k=1}^{n+1} k=(n+1)(n+2) / 2$. To see this, note that

$$
\begin{align*}
\sum_{k=1}^{n+1} k & =\left(\sum_{k=1}^{n} k\right)+(n+1) \\
& =\frac{n(n+1)}{2}+(n+1) \tag{byinduction}\\
& =\frac{n^{2}+n}{2}+\frac{2 n+2}{2} \\
& =\frac{n^{2}+3 n+2}{2}=\frac{(n+1)(n+2)}{2}
\end{align*}
$$

as desired.

Alternate proof. Build a staircase of height n with k blocks in the $k^{t h}$ row, so that the total number of blocks it contains is $\sum_{k=1}^{n} k$. For example, if $n=5$ then the staircase looks like this:

Now make a photocopy of the staircase, rotate it 180°, and put it next to the original staircase:

Push the two staircases together. They form a rectangle with height n and width $n+1$. By the Fundamental Theorem of Combinatorics ${ }^{2}$, the number of squares in the rectangle is

$$
n(n+1)=2 \sum_{k=1}^{n} k
$$

which is equivalent to (1).

[^0]
[^0]: 1 "Obvious" is one of my least favorite words - if you write that something is obvious, it had better be really, really obvious, like $1=1$ (as here)

 2 "If you count a set in two different ways, you get the same answer."

