Problem #1(c): The following are all considered *different* bridge deals:

Deal 1	Deal 2
North: \blacklozenge AKQ \heartsuit AQT \diamondsuit 7532 \clubsuit 864	North: ♠ AKQ ♡ AQT ◊ 7532 ♣ 864
South: 🔶 JT9 🛇 K864 🗇 A 🐥 A7532	South: ♠ 5432 ♡ 53 ◊ KQJT98 ♣ J
East: 🏟 5432 🛇 53 \land KQJT98 🐥 J	East: 🌲 JT9 🛇 K864 \land A 🌲 A7532
West: 🏟 876 🛇 J972 💠 64 🗍 KQT9	West: 🌲 876 🛇 J972 \land 64 🜲 KQT9

Problem 4: The phrase "decimal expansion" seems to be causing unintended confusion. I just mean that every digit of the number is a 9. For example, n = 3 is a divisor of 9; n = 239 is a divisor of 99999999 (= $41841 \cdot 239$); etc.

Hint: Use the Pigeonhole Principle. (This has come up in a couple of in-class problems, but we haven't yet focused on it. See §1.3.3.)