Math 724, Fall 2013

Homework \#6

Instructions: Write up your solutions in LaTeX and hand in a hard copy in class on Friday, November 22. Collaboration is allowed (and in fact encouraged), but each student must write up his or her solutions independently and acknowledge all collaborators.

Problem \#1 Consider the sequence $T_{0}, T_{1}, T_{2}, T_{3}, \ldots$ defined recursively by

$$
T_{n}=T_{n-1}+T_{n-2}+T_{n-3} \quad \text { for } n \geq 3
$$

Find a closed-form expression (in terms of x, T_{0}, T_{1}, T_{2}) for the generating function

$$
\Omega=\sum_{n \geq 0} T_{n} x^{n} .
$$

Problem \#2 Give a combinatorial interpretation for the coefficient of $q^{k} x^{\ell}$ in the power series

$$
\prod_{n=1}^{\infty}\left(1+q x^{n}+q x^{2 n}+q x^{3 n}+q x^{4 n}+\cdots\right)
$$

Problem \#3 Bogart \#224.

Problem \#4 Bogart, Chapter 4, Supplementary Problem \#4.

Problem \#5 Bogart, Chapter 4, Supplementary Problem \#9.

Problem \#6 Bogart \#234.

Problem \#7 Bogart \#238 and \#239. (Once you do \#238, problem \#239 should be easy.)

Problem \#8 The game of egdirb uses a deck of 30 cards. There are three suits: artichokes, ferrets, and pumpkins. Each suit contains ten cards. In one deal of egdirb, each of three players (Larry, Curly and Moe) receives a hand of 10 cards. Use inclusion/exclusion to determine the probability that at least one player is dealt a void (i.e., zero cards) in at least one suit.

Extra credit: Redo problem \#7 for the game of bridge (with a standard four-suited deck and four players, each of whom receives 13 cards). It is OK to write a computer program (preferably in Sage) to compute the answer; if you do so, include the source code in your written solutions.

