Math 724, Fall 2013

Homework \#1
Instructions: Write up your solutions in LaTeX and hand in a hard copy in class on Friday, September 6. Collaboration is allowed (and in fact encouraged), but each student must write up his or her solutions independently and acknowledge all collaborators.
(\#1) Problem \#13 (Bogart, p.7)
(\#2) Problem \#19 (p.8)
(\#3) Problem \#20 (p.9)
(\#4) Chapter 1 Supplementary Problem \#1 (p.30)
(\#5) Chapter 1 Supplementary Problem \#2 (p.30)
(\#6) Chapter 1 Supplementary Problem \#8 (p.31)
(\#7) Let $a_{n}=\sum_{k=0}^{n}\binom{n}{k}^{2}$. Calculate a_{n} for $0 \leq n \leq 3$. Stare at Pascal's triangle and make a conjecture about the value of a_{n}. If you like, use Sage or another computer algebra system to check that your conjecture works for a few more values of n. Prove your conjecture using a bijection. (There may be a proof by induction, but it's probably disgusting.)

