Math 223 Test \#2 (11/9/12)

Solutions

(\#1a) $\mathbf{v}(t)=\mathbf{i}+2 t^{2} \mathbf{j}+2 t \mathbf{k} ;$ speed $=\|\mathbf{v}(t)\|=\sqrt{1+4 t^{4}+4 t^{2}}=1+2 t^{2}$
(\#1b) Total distance traveled $=\int_{0}^{3}\|\mathbf{v}\| d t=\int_{0}^{3}\left(1+2 t^{2}\right) d t=2 t+\left.\frac{2 t^{2}}{3}\right|_{0} ^{3}=3+6=9$
$(\# 1 \mathrm{c}) \mathbf{a}(t)=4 t \mathbf{j}+2 \mathbf{k} ; \mathbf{v} \times \mathbf{a}=\left|\begin{array}{ccc}\mathbf{i} & \mathbf{j} & \mathbf{k} \\ 1 & 2 t^{2} & 2 t \\ 0 & 4 t & 2\end{array}\right|=-4 t^{2} \mathbf{i}-2 \mathbf{j}+4 t \mathbf{k} ;\|\mathbf{v} \times \mathbf{a}\|=\sqrt{16 t^{4}+4+16 t^{2}}=2\left(1+2 t^{2}\right)$
$\kappa=\frac{\|\mathbf{v} \times \mathbf{a}\|\|\mathbf{v}\|^{3} \frac{2\left(1+2 t^{2}\right)}{\left(1+2 t^{2}\right)^{3}}=\frac{2}{\left(1+2 t^{2}\right)^{2}}}{=}$
$(\# 1 \mathrm{~d}) \mathbf{a}^{\prime}(t)=4 \mathbf{j} ;(\mathbf{v} \times \mathbf{a}) \cdot \mathbf{a}^{\prime}=-8 \mathbf{j} ; \tau=\frac{(\mathbf{v} \times \mathbf{a}) \cdot \mathbf{a}^{\prime}}{\|\mathbf{v} \times \mathbf{a}\|^{2}}=\frac{-8}{\left(2\left(1+2 t^{2}\right)\right)^{2}}=\frac{-2}{\left(1+2 t^{2}\right)^{2}}$
(\#1e) Curvature and torsion are both very close to zero when $t=100$, which indicates that the trajectory is close to a straight line.
(\#2b) A watermelon placed at $(1,3)$ will tend to rotate clockwise in the $x y$-plane; this indicates that $(\nabla \times \mathbf{G})(1,-3)$ should be some negative constant times \mathbf{k}.
$(\# 2 \mathrm{c}) \operatorname{div} \mathbf{F}(0,0)>0$, since $(0,0)$ is a source for \mathbf{F} - the arrows all point away from it.
(\#2d) \mathbf{G} cannot be a gradient vector field. As seen in (b), its curl is nonzero, so it is not irrotational - but gradient fields must be irrotational (because $\nabla \mathbf{x}(\nabla f)=\mathbf{0}$). Alternately, gradient fields cannot have closed flow lines (because the potential function would increase around a closed curve, which is impossible).
(\#3) Note first that $\mathbf{x}^{\prime}(t)=(-r \sin t, r \cos t, 1)$ and $\left\|\mathbf{x}^{\prime}(t)\right\|=\sqrt{r^{2} \sin ^{2} t+r^{2} \cos ^{2} t+1}=\sqrt{r^{2}+1}$.
(\#3a) $f(\mathrm{x}(t))=r^{2} \sin ^{2} t+r^{2} \cos ^{2} t+t^{2}=r^{2}+t^{2}$, so

$$
\begin{aligned}
\int_{C} f d s & =\int_{0}^{2 \pi} f(\mathbf{x}(t))\left\|\mathbf{x}^{\prime}(t)\right\| d t=\sqrt{r^{2}+1} \int_{0}^{2 \pi}\left(r^{2}+t^{2}\right) d t=\left.\sqrt{r^{2}+1}\left(r^{2} t+t^{3} / 3\right)\right|_{0} ^{2 \pi} \\
& =\sqrt{r^{2}+1}\left(2 \pi r^{2}+8 \pi^{3} / 3\right)
\end{aligned}
$$

$(\# 3 \mathrm{~b}) \mathbf{F}(\mathrm{x}(t))=(r \sin t,-r \cos t, 1)$, so

$$
\begin{aligned}
\int_{C} \mathbf{F} \cdot d \mathbf{s} & =\int_{0}^{2 \pi} \mathbf{F}(\mathbf{x}(t)) \cdot \mathbf{x}^{\prime}(t) d t=\int_{0}^{2 \pi}(r \sin t,-r \cos t, 1) \cdot(-r \sin t, r \cos t, 1) d t \\
& =\int_{0}^{2 \pi}\left(-r^{2} \sin ^{2} t-r^{2} \cos ^{2} t+1\right) d t=\int_{0}^{2 \pi}\left(-r^{2}+1\right) d t=2 \pi\left(1-r^{2}\right)
\end{aligned}
$$

(\#3c) Reversing the orientation of C would not change the scalar line integral in (a), but it would reverse the sign of the vector line integral in (b).
(\#4) By Green's theorem, the integral equals the area enclosed by the curve, which is 10 .
$(\# 5)$ We need to find a function $f(x, y)$ such that $\frac{\partial f}{\partial x}=6 x^{2}+2 x / y-4 y / x^{2}$ and $\frac{\partial f}{\partial y}=4 / x-x^{2} / y^{2}+3$. That is,

$$
\begin{aligned}
& f=\int\left(6 x^{2}+2 x / y-4 y / x^{2}\right) d x=2 x^{3}+x^{2} / y+4 y / x+\alpha(y), \\
& f=\int\left(4 / x-x^{2} / y^{2}+3 d y=4 y / x+x^{2} / y+3 y+\beta(x)\right.
\end{aligned}
$$

The expression $x^{2} / y+4 y / x$ occurs on both lines, and looking at the other pieces we must have $\alpha(y)=3 y$ and $\beta(x)=2 x^{3}$. We conclude that the desired scalar potential function is

$$
4 y / x+x^{2} / y+3 y+2 x^{3} .
$$

(\#6) There are many answers possible. Full credit was awarded for any vector field whose curl was nonzero. (If G has a potential function f, then $\nabla f=\mathbf{G}$, and $\nabla \times \mathbf{G}=\nabla \times(\nabla f)=0$. Therefore, if $\nabla \times \mathbf{G} \neq \mathbf{0}$ then \mathbf{G} cannot have a scalar potential function and you get to go free.)

