Common Mathematical Symbols

$\varnothing \quad$ The empty set. I.e., a set with nothing in it. Not the Greek letter phi (ϕ), and not a synonym for "does not exist".
$\mathbb{R} \quad$ The set of real numbers.
$\in \quad$ "is an element of"; the thing after it should be a set. For example, $\pi \in \mathbb{R}$.
$\subset, \subseteq \quad$ "is a subset of". Both things should be sets. For example, $[0,1] \subseteq \mathbb{R}$.
© "is an open subset of". Not standard notation, but an excellent thing to have a symbol for.
$\{\ldots \mid \ldots\}$ Set-builder notation. The \mid means "such that"; sometimes: is used instead. The notation can be translated word-for-word into English: for example, $\{y \in Y \mid y=f(x)$ for some $x \in X\}$ (p. 83 of Colley) means, literally, "the set of all elements y of the set Y such that $y=f(x)$ for some element x of the set X ".
$f: X \rightarrow Y \quad$ " f is a function from X to Y ".
$\|\mathbf{x}\| \quad$ Magnitude of the vector \mathbf{x} (a.k.a. length, norm)
$D f \quad$ The derivative matrix of a function f.
$D_{\mathbf{u}} f(\mathbf{a}) \quad$ Directional derivative of function f in direction \mathbf{u} at point \mathbf{a}
$f \circ g \quad$ The composition of two functions: $(f \circ g)(x)=f(g(x))$. Note that $f \circ g \neq g \circ f$.
$\frac{\partial f}{\partial x}, f_{x} \quad$ Partial derivative of f with respect to x.
$\nabla f \quad$ The gradient of a scalar-valued function f. Identical to $D f$, but only used for scalar-valued functions.
$\nabla \cdot \mathbf{F} \quad$ Divergence of a vector field \mathbf{F}
$\nabla \times \mathbf{F} \quad$ Curl of a vector field \mathbf{F}

