First, I made a mistake in class when talking about the vector field

$$
\mathbf{F}(x, y)=\frac{x \mathbf{i}+y \mathbf{j}}{\left(x^{2}+y^{2}\right)^{4}}
$$

As pointed out by a couple of students, this field actually has negative divergence where it is defined (i.e., away from the origin). Algebraically, this is because

$$
\begin{aligned}
(\nabla \cdot \mathbf{F})(x, y) & =\frac{\partial}{\partial x} \mathbf{F}_{x}+\frac{\partial}{\partial y} \mathbf{F}_{y} \\
& =\frac{\left(x^{2}+y^{2}\right)^{4}-(x)\left(4\left(x^{2}+y^{2}\right)^{3}(2 x)\right.}{\left(x^{2}+y^{2}\right)^{8}}+\frac{\left(x^{2}+y^{2}\right)^{4}-(y)\left(4\left(x^{2}+y^{2}\right)^{3}(2 y)\right.}{\left(x^{2}+y^{2}\right)^{8}} \\
& =\frac{x^{2}+y^{2}-8 x^{2}}{\left(x^{2}+y^{2}\right)^{5}}+\frac{x^{2}+y^{2}-8 y^{2}}{\left(x^{2}+y^{2}\right)^{5}} \\
& =\frac{\left.-6 x^{2}-6 y^{2}\right)}{\left(x^{2}+y^{2}\right)^{5}}=\frac{-6}{\left(x^{2}+y^{2}\right)^{4}}
\end{aligned}
$$

which is negative for all $(x, y) \neq(0,0)$. Geometrically, it is because the arrows pointing into any point (again, other than the origin) are bigger than the arrows pointing away from it.

I had intended to show a field that had positive divergence at $(0,0)$ but smaller positive divergence away from it. A better example would have been

$$
\mathbf{G}(x, y)=\frac{x \mathbf{i}+y \mathbf{j}}{1+x^{2}+y^{2}}
$$

Here the calculation comes out as

$$
(\nabla \cdot \mathbf{G})(x, y)=\frac{2}{\left(1+x^{2}+y^{2}\right)^{2}}
$$

which is positive for all $(x, y) \in \mathbb{R}^{2}$, but greatest at $(0,0)$.
[6.2] \#8: Let $\mathbf{F}(x, y)=3 x y \mathbf{i}+2 x^{2} \mathbf{j}$.
First, we evaluate $\oint_{C} \mathbf{F} \cdot d \mathbf{s}$ directly. We need to parametrize C. Let L, B, R be the left, bottom and right line segments, and let T be the semicircle on the top. Note that T has radius 1 and center at $(1,0)$, so it satisfies the equation $(x-1)^{2}+y^{2}=1$. We can therefore parametrize the curves as

Curve	$\mathbf{x}(t)$	Range for t	$\mathbf{x}^{\prime}(t)$
L	$(0,2-t)$	$0 \leqslant t \leqslant 2$	$(0,-1)$
B	$(t,-2)$	$0 \leqslant t \leqslant 2$	$(1,0)$
R	$(2, t)$	$-2 \leqslant t \leqslant 0$	$(0,1)$
T	$(1+\cos t, \sin t)$	$0 \leqslant t \leqslant \pi$	$(-\sin t, \cos t)$

Therefore

$$
\begin{aligned}
\oint_{C} \mathbf{F} \cdot d \mathbf{s}= & \int_{L} \mathbf{F}(\mathbf{x}(t)) \cdot \mathbf{x}^{\prime}(t) d t+\int_{B} \mathbf{F}(\mathbf{x}(t)) \cdot \mathbf{x}^{\prime}(t) d t+\int_{R} \mathbf{F}(\mathbf{x}(t)) \cdot \mathbf{x}^{\prime}(t) d t+\int_{T} \mathbf{F}(\mathbf{x}(t)) \cdot \mathbf{x}^{\prime}(t) d t \\
= & \int_{0}^{2}(0,0) \cdot(0,-1) d t+\int_{0}^{2}\left(-6 t, 2 t^{2}\right) \cdot(1,0) d t+\int_{-2}^{0}(6 t, 8) \cdot(0,1) d t \\
& +\int_{0}^{\pi}\left(3(1+\cos t)(\sin t) \mathbf{i}+2(1+\cos t)^{2} \mathbf{j}\right) \cdot(-\sin t \mathbf{i}+\cos t \mathbf{j}) d t \\
= & -\int_{0}^{2} 6 t d t+\int_{-2}^{0} 8 d t+\int_{0}^{\pi}\left(5 \cos ^{3} t+7 \cos ^{2} t-\cos t-3\right) d t \\
= & -\left.3 t^{2}\right|_{0} ^{2}+\left.8 t\right|_{-2} ^{0}+\int_{0}^{\pi}\left(7 \cos ^{2} t-3\right) d t \quad \text { (by symmetry) } \\
= & -12+16+\left.\frac{t+7 \cos t \sin t}{2}\right|_{0} ^{\pi} \\
= & 4+\frac{\pi}{2} .
\end{aligned}
$$

Meanwhile, let D be the area enclosed by the curve C. Green's Theorem says that

$$
\begin{aligned}
\oint_{C} \mathbf{F} \cdot d \mathbf{s} & \left.=\iint_{D}(\nabla \times \mathbf{F}) \cdot \mathbf{k} d A=\iint_{D}\left(\frac{\partial}{\partial x}\left(2 x^{2}\right)-\frac{\partial}{\partial y}(3 x y)\right) d A=\iint_{D}(4 x-3 x)\right) d A \\
& =\int_{0}^{2} \int_{-2}^{\sqrt{1-(x-1)^{2}}} x d y d x \\
& =\int_{0}^{2}\left(2+\sqrt{1-(x-1)^{2}}\right) x d x \\
& =(\text { calculation omitted }) \\
& =\frac{\arcsin (x-1)}{2}+x^{2}+\left.\frac{(x+1)(2 x-3) \sqrt{2 x-x^{2}}}{6}\right|_{0} ^{2} \\
& =4+\frac{\pi}{2} .
\end{aligned}
$$

Note: I used a computer algebra system to do this last integral. Nothing this complicated will appear on Friday's test!
[6.2] \#10: Call the ellipse C and call the region it encloses D. The work done by the field on the particle is

$$
\begin{aligned}
\oint_{C} \mathbf{F} \cdot d \mathbf{s} & =\iint_{D}(\nabla \times \mathbf{F}) \cdot \mathbf{k} d A \\
& =\iint_{D}\left(\frac{\partial}{\partial x}(x-4 y)-\frac{\partial}{\partial y}(4 y-3 x)\right) d A \\
& =\iint_{D}-3 d A \\
& =3(\text { area of } D) .
\end{aligned}
$$

We have shown in class (and see the book, Example 3, p.430) that the area of an ellipse with horizontal and vertical radii a, b is $\pi a b$. Therefore the area of D is 2π and the integral is -6π.

