First, I made a mistake in class when talking about the vector field

i+ yj
As pointed out by a couple of students, this field actually has negative divergence where it is defined
(i.e., away from the origin). Algebraically, this is because
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which is negative for all (z,y) # (0,0). Geometrically, it is because the arrows pointing into any
point (again, other than the origin) are bigger than the arrows pointing away from it.

I had intended to show a field that had positive divergence at (0,0) but smaller positive divergence
away from it. A better example would have been
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Here the calculation comes out as
2
(V-G)(x,y) =
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which is positive for all (z,y) € R?, but greatest at (0,0).

[6.2] #8: Let F(z,y) = 3zyi + 222j.

First, we evaluate §C F - ds directly. We need to parametrize C'. Let L, B, R be the left, bottom and
right line segments, and let 7" be the semicircle on the top. Note that T" has radius 1 and center at
(1,0), so it satisfies the equation (z — 1)? 4+ y? = 1. We can therefore parametrize the curves as

Curve x(t) Range for ¢ x'(t)
L ©, 2—1) 0<f<2 ©,—1)
B (t, —2) 0<t<2 (1,0)
R 2, t) —2<t<0 (0,1)
T  (1+4cost,sint) 0<t<m (—sint, cost)



Therefore
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Meanwhile, let D be the area enclosed by the curve C. Green’s Theorem says that
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Note: I used a computer algebra system to do this last integral. Nothing this complicated will

appear on Friday’s test!

[6.2] #10: Call the ellipse C' and call the region it encloses D. The work done by the field on the

particle is
%F-dSZJJ(VxF)-de
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= 3(area of D).



We have shown in class (and see the book, Example 3, p.430) that the area of an ellipse with
horizontal and vertical radii a, b is wab. Therefore the area of D is 27 and the integral is —6m.



