[2.5] \#20: Let $\mathrm{f}(x)=\left(x^{2}, \cos 3 x, \ln x\right)$ and let $g(s, t, u)=s+t^{2}+u^{3}$. Calculate $D(f \circ g)$ both (a) by evaluating $\mathrm{f} \circ g$ and (b) by using the Chain Rule.
(a) For short, let $\mathbf{h}=\mathbf{f} \circ g$. Then

$$
\begin{aligned}
h(s, t, u) & =\mathbf{f}(g(s, t, u))=\mathbf{f}\left(s+t^{2}+u^{3}\right) \\
& =\left(\left(s+t^{2}+u^{3}\right)^{2}, \cos \left(3\left(s+t^{2}+u^{3}\right)\right), \ln \left(s+t^{2}+u^{3}\right)\right) \\
& =\left(h_{1}(s, t, u), h_{2}(s, t, u), h_{3}(s, t, u)\right) \\
\operatorname{Dh}(s, t, u) & =\left[\begin{array}{lll}
\frac{\partial h_{1}}{\partial s} & \frac{\partial h_{1}}{\partial t} & \frac{\partial h_{1}}{\partial u} \\
\frac{\partial h_{2}}{\partial s} & \frac{\partial h_{2}}{\partial t} & \frac{\partial h_{2}}{\partial u} \\
\frac{\partial h_{3}}{\partial s} & \frac{\partial h_{3}}{\partial t} & \frac{\partial h_{3}}{\partial u}
\end{array}\right]=\left[\begin{array}{ccc}
2\left(s+t^{2}+u^{3}\right) & 4 t\left(s+t^{2}+u^{3}\right) & 6 u^{2}\left(s+t^{2}+u^{3}\right) \\
-3 \sin \left(s+t+u^{3}\right) & -6 t \sin \left(s+t+u^{3}\right) & -9 u^{2} \sin \left(s+t+u^{3}\right) \\
\frac{1}{s+t^{2}+u^{3}} & \frac{2 u}{s+t^{2}+u^{3}} & \frac{3 u^{2}}{s+t^{2}+u^{3}}
\end{array}\right]
\end{aligned}
$$

(b) The derivative matrices are

$$
D \mathbf{f}(x)=\left[\begin{array}{c}
2 x \\
-3 \sin 3 x \\
1 / x
\end{array}\right], \quad D g(s, t, u)=\left[\begin{array}{lll}
1 & 2 t & 3 u^{2}
\end{array}\right], \quad D \mathbf{f}(g(s, t, u))=\left[\begin{array}{c}
2\left(s+t^{2}+u^{3}\right) \\
-3 \sin \left(3\left(s+t^{2}+u^{3}\right)\right) \\
1 /\left(s+t^{2}+u^{3}\right)
\end{array}\right]
$$

and so the Chain Rule says that

$$
D(\mathbf{f} \circ g)(s, t, u)=\left[\begin{array}{c}
2\left(s+t^{2}+u^{3}\right) \\
-3 \sin \left(3\left(s+t^{2}+u^{3}\right)\right) \\
1 /\left(s+t^{2}+u^{3}\right)
\end{array}\right]\left[\begin{array}{lll}
1 & 2 t & 3 u^{2}
\end{array}\right]
$$

which gives the same result as before. Remember how matrix multiplication works: here we are multiplying a 3×1 matrix M by a 1×3 matrix N, so the result is a 3×3 matrix whose entry in row i and column j is the dot product of the $i^{t h}$ row of M with the $j^{t h}$ column of N. In this case, the rows of M and the columns of N happen to only have one element each, so their dot product is just their product.

Warning: Be careful here, because $\mathbf{f} \circ g$ and $g \circ \mathbf{f}$ are both well-defined functions. They have different domains and ranges, though: $g \circ \mathbf{f}$ is a function $\mathbb{R} \rightarrow \mathbb{R}$ rather than $\mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$. Specifically,

$$
g \circ \mathbf{f}(x)=g\left(x^{2}, \cos 3 x, \ln x\right)=x^{2}+\cos ^{2}(3 x)+(\ln x)^{3} .
$$

and so its derivative is

$$
(g \circ \mathbf{f})^{\prime}(x)=2 x-2 \cos 3 x \sin 3 x+3(\ln x)^{2} / x .
$$

The Chain Rule works here too. We have already calculated $D \mathbf{f}(x)$, and

$$
D g(\mathbf{f}(x))=D g\left(x^{2}, \cos 3 x, \ln x\right)=\left[\begin{array}{lll}
1 & 2 \cos 3 x & 3(\ln x)^{2}
\end{array}\right]
$$

and so

$$
\begin{aligned}
D(g \circ \mathbf{f})(x) & =[D g(\mathbf{f}(x))][D \mathbf{f}(x)] \\
& =\left[\begin{array}{lll}
1 & 2 \cos 3 x & 3(\ln x)^{2}
\end{array}\right]\left[\begin{array}{c}
2 x \\
-3 \sin 3 x \\
1 / x
\end{array}\right] \\
& =2 x-6 \sin 3 x \cos 3 x+3(\ln x)^{2} / x .
\end{aligned}
$$

[2.6] \#17: Find an equation for the tangent plane to the surface given by the equation $z e^{y} \cos x=1$ at the point $(\pi, 0,-1)$.

This is a surface in \mathbb{R}^{3}; we can think of it as a level surface of the function $f(x, y, z)=z e^{y} \cos x-1$. The gradient $\nabla f(\pi, 0,-1)$ will give a normal vector to the tangent plane, so we calculate

$$
\begin{aligned}
\nabla f(x, y, z) & =\left(f_{x}(x, y, z), f_{y}(x, y, z), f_{z}(x, y, z)\right) \\
& =\left(-z e^{y} \sin x, z e^{y} \cos x, e^{y} \cos x\right), \\
\nabla f(\pi, 0,-1) & =(0,-1,1) .
\end{aligned}
$$

The tangent plane also passes through the point $(\pi, 0,-1)$, so its equation is

$$
0(x-\pi)+(-1)(y-0)+1(z-(-1))=0 \quad \text { or more simply } \quad-y+z+1=0 .
$$

By contrast, what if we want to find the tangent space to the graph of f ? This graph is defined by the equation $w=f(x, y, z)$ in \mathbb{R}^{4}, and the point $(x, y, z, w)=(\pi, 0,-1,0)$ lies on it. It's important to realize that the graph is a 3 -dimensional object (just like the graph of a function $\mathbb{R} \rightarrow \mathbb{R}$ is a 1 -dimensional object that lives in \mathbb{R}^{2}, and the graph of a function $\mathbb{R}^{2} \rightarrow \mathbb{R}$ is a 2-dimensional object that lives in \mathbb{R}^{3}), and so its tangent space will be 3 -dimensional as well. We can find the equation to the tangent space by the formula

$$
\begin{aligned}
w-0 & =f_{x}(\pi, 0,-1)(x-\pi)+f_{y}(\pi, 0,-1)(y-0)+f_{z}(\pi, 0,-1)(z+1) \\
w & =0(x-\pi)-(y-0)+(z+1)=-y+z+1 .
\end{aligned}
$$

[2.6] \#21: Calculate the plane tangent to the surface $x \sin y+x z^{2}=2 e^{y z}$ at the point $(2, \pi / 2,0)$ in two ways.

(a) We can solve for x in terms of the other two variables as

$$
x=\frac{2 e^{y z}}{\sin y+z^{2}}
$$

and we can therefore regard x as a function of y and z; call it $x=p(y, z)$. So $p(\pi / 2,0)=2$, and we can think of the surface as the graph of p in \mathbb{R}^{3}; we just need to remember that x is the dependent variable and y, z are independent. Therefore, we can find the equation of the tangent plane by using the formula

$$
\begin{equation*}
x=p_{y}(\pi / 2,0)(y-\pi / 2)+p_{z}(\pi / 2,0)(z-0)+p(\pi / 2,0) \tag{*}
\end{equation*}
$$

The differentiation requires the Quotient Rule and is unpleasant; I used a computer to get

$$
p_{y}(y, z)=\frac{2 e^{y z}\left(z \sin y+z^{3}-\cos y\right)}{\left(\sin y+z^{2}\right)^{2}}, \quad p_{z}(y, z)=\frac{2 e^{y z}\left(y \sin y+y z^{2}-2 z\right)}{\left(\sin y+z^{2}\right)^{2}} .
$$

The good news is that plugging in $(y, z)=(\pi / 2,0)$ simplifies matters: $p_{y}(\pi / 2,0)=0$ and $p_{z}(y, z)=$ π. So equation $\left({ }^{*}\right)$ becomes

$$
x=\pi z+2
$$

(b) Now let's think of the surface as a level surface of the function $f: \mathbb{R}^{3} \rightarrow \mathbb{R}$ defined by

$$
f(x, y, z)=x \sin y+x z^{2}-2 e^{y z}
$$

Specifically, the surface we are interested in is defined by the equation $f(x, y, z)=0$. The normal vector we are looking for is $\nabla f(2, \pi / 2,0)$. This differentiation is far less unpleasant:

$$
\begin{aligned}
\nabla f(x, y, z) & =f_{x} \mathbf{i}+f_{y} \mathbf{j}+f_{z} \mathbf{k} \\
& =\left(\sin y+z^{2}\right) \mathbf{i}+\left(x \cos y-2 z e^{y z}\right) \mathbf{j}+\left(2 x z-2 y e^{y z}\right) \mathbf{k} \\
\nabla f(2, \pi / 2,0) & =\mathbf{i}+0 \mathbf{j}-\pi \mathbf{k}
\end{aligned}
$$

and so the equation of the tangent plane is

$$
\begin{array}{r}
(\nabla f(2, \pi / 2,0)) \cdot(x-2, y-\pi / 2, z-0)=0 \\
(1,0,-\pi) \cdot(x-2, y-\pi / 2, z-0)=0 \\
x-2-\pi z=0
\end{array}
$$

which is equivalent to the equation $x=\pi z+2$ found by the first method.

