Math 223, Fall 2010
 Review Information for Final Exam

1. General Information

Time, date and place of final exam: Monday, December 13, 10:30 AM - 1:00 PM, Wescoe 4051 (the usual classroom). Plan to arrive 15 minutes early so that we can start on time.

Bring pens or pencils, scratch paper, and a calculator. Check the batteries beforehand - two students may not share a calculator, and I will not have extras available.

The exam is closed-book and closed-notes; however, a list of formulas will be provided to you (see next page).

You don't need to bring a bluebook.
You are responsible for the following topics in addition to those covered on the two in-class tests:

- Conservative vector fields, path-independence, and the criterion involving curl (§6.3, pp. 390396)
- Finding scalar potential functions (§6.3, pp. 396-397)
- General theory of parametrized surfaces: coordinate curves, tangent and normal vectors, tangent planes, and surface area (§7.1, pp. 405-417)
- Specific surfaces you should know how to parametrize: plane, disk, sphere, cylinder, cone (throughout chapter 7)
- Scalar and vector surface over orientable surfaces (§7.2, p. 419-435)
- Stokes' Theorem and Gauss' Theorem (§7.3, p.439-444); you don't have to know the proofs, but should understand the interpretations discussed in class

I will hold my usual office hours on Thursday $12 / 9(1: 00-2: 15)$ as well as extra office hours on Friday 12/10: 10:00-12:00 and 1:00-3:00. I will also try to check my e-mail regularly over the weekend (jmartin@math.ku.edu).

2. Formulas that will be given to you on the exam

Projection: For all vectors $\mathbf{a}, \mathbf{b} \in \mathbb{R}^{n}$,

$$
\operatorname{proj}_{\mathbf{a}} \mathbf{b}=\left(\frac{\mathbf{a} \cdot \mathbf{b}}{\mathbf{a} \cdot \mathbf{a}}\right) \mathbf{a}
$$

Triangle inequality: For all vectors $\mathbf{a}, \mathbf{b} \in \mathbb{R}^{n}$,

$$
\|\mathbf{a}+\mathbf{b}\| \leqslant\|\mathbf{a}\|+\|\mathbf{b}\|
$$

Conversion between rectangular and spherical coordinates:

$$
\left\{\begin{array} { l }
{ x = \rho \operatorname { s i n } \phi \operatorname { c o s } \theta } \\
{ y = \rho \operatorname { s i n } \phi \operatorname { s i n } \theta } \\
{ z = \rho \operatorname { c o s } \phi }
\end{array} \quad \left\{\begin{array}{r}
\rho^{2}=x^{2}+y^{2}+z^{2} \\
\tan \phi=\sqrt{x^{2}+y^{2}} / z \\
\tan \theta=y / x
\end{array}\right.\right.
$$

Product and Quotient Rules: If $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ and $g: \mathbb{R}^{n} \rightarrow \mathbb{R}$ are differentiable at $\mathbf{a} \in \mathbb{R}^{n}$, then

$$
\begin{aligned}
D(f g)(\mathbf{a}) & =g(\mathbf{a}) D f(\mathbf{a})+f(\mathbf{a}) D g(\mathbf{a}) \\
D(f / g)(\mathbf{a}) & =\frac{g(\mathbf{a}) D f(\mathbf{a})-f(\mathbf{a}) D g(\mathbf{a})}{g(\mathbf{a})^{2}} \quad(\text { provided that } g(\mathbf{a}) \neq 0)
\end{aligned}
$$

Chain Rule: If $g: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ and $f: \mathbb{R}^{m} \rightarrow \mathbb{R}^{k}$ are functions such that g is differentiable at $\mathbf{a} \in \mathbb{R}^{n}$, and f is differentiable at $g(\mathbf{a}) \in \mathbb{R}^{m}$, then

$$
D(f \circ g)(\mathbf{a})=[D f(g(\mathbf{a}))][D g(\mathbf{a})]
$$

Curvature:

$$
\kappa=\left\|\frac{d \mathbf{T}}{d s}\right\|=\frac{\|\mathbf{v} \times \mathbf{a}\|}{\|\mathbf{v}\|^{3}}
$$

Torsion:

$$
\frac{d \mathbf{B}}{d s}=-\tau \mathbf{N} ; \quad \tau=\frac{(\mathbf{v} \times \mathbf{a}) \cdot \mathbf{a}^{\prime}}{\|\mathbf{v} \times \mathbf{a}\|^{2}}
$$

Line integrals:

$$
\int_{\mathbf{x}} f d s=\int_{a}^{b} f(\mathbf{x}(t))\|\mathbf{x}(t)\| d t \quad \int_{\mathbf{x}} \mathbf{F} \cdot d \mathbf{s}=\int_{a}^{b} \mathbf{F}(\mathbf{x}(t)) \cdot \mathbf{x}(t) d t
$$

Green's Theorem:

$$
\oint_{\partial D} M d x+N d y=\iint_{D}\left(N_{x}-M_{y}\right) d x d y
$$

Surface integrals:

$$
\iint_{\mathbf{X}} f d S=\iint_{D} f(\mathbf{X}(s, t))\|\mathbf{N}(s, t)\| d s d t \quad \iint_{\mathbf{X}} \mathbf{F} \cdot d \mathbf{S}=\iint_{D} \mathbf{F}(\mathbf{X}(s, t)) \cdot \mathbf{N}(s, t) d s d t
$$

Stokes' Theorem:

$$
\iint_{S}(\nabla \times \mathbf{F}) \cdot d \mathbf{S}=\oint_{\partial S} \mathbf{F} \cdot d \mathbf{s}
$$

Divergence Theorem:

$$
\iiint_{B}(\nabla \cdot \mathbf{F}) \cdot d V=\oiint_{\partial B} \mathbf{F} \cdot d \mathbf{S}
$$

Two useful integrals (I may supply other integral formulas as needed):

$$
\int \sin ^{2} u d u=\frac{u-\sin u \cos u}{2}+C \quad \int \cos ^{2} u d u=\frac{u+\sin u \cos u}{2}+C
$$

3. Review Exercises

For each topic, I've listed some exercises from the textbook that might resemble exam problems. Some of these exercises have already appeared in homework assignments. The problems on the final exam will not necessarily look like these review exercises! You should not necessarily do all the problems listed (which you won't have time for anyway). One strategy is to pick one topic at a time and work on the review exercises until they start to become boring (which is a sign that you are more familiar with the topic in question).

Chapter 1:

- Find a parametric description of a line in \mathbb{R}^{3}, given two points on it, or a point and a direction vector, or two planes that both contain the line, etc. (§1.2: \#13-20)
- Find the distance between a point and a line, or between two skew lines in \mathbb{R}^{3}, or between a point and a plane in \mathbb{R}^{3}, etc. ($\S 1.5: \# 20-28$)
- Prove simple vector identities involving dot and/or cross products, projections, and norms: (§1.3: \#17-19; §1.4: \#20; §1.6: \#9-12)

Chapter 2:

- Sketch the graph and/or level curves of a function $f: X \subseteq \mathbb{R}^{2} \rightarrow \mathbb{R}(\S 2.1: \# 10-19)$, or the level surfaces of a function $f: X \subseteq \mathbb{R}^{3} \rightarrow \mathbb{R}(\S 2.1: \# 28-32)$
- Evaluate a limit of a multivariable function, or prove that it does not exist (§2.2: \#7-22, 28-33)
- Understand what it means for a function to be continuous at a point in its domain (§2.2: \#3442)
- Calculate the derivative matrix of a function (§2.3: \#20-25)
- Find the tangent plane to the graph of a function $f: X \subseteq \mathbb{R}^{2} \rightarrow \mathbb{R}(\S 2.2: \# 29-33)$ or to a level surface of a function $f: X \subseteq \mathbb{R}^{3} \rightarrow \mathbb{R}(\S 2.6: \# 16-23)$
- Understand what it means for a function to be of class C^{k}, and what that implies about its partial derivatives (§2.4: \#9-18)
- Apply the Chain Rule in its matrix form (§2.5: \#15-21)
- Calculate directional derivatives and the gradient, and determine the direction of greatest increase or decrease of a function (§2.6: \#2-15)

Chapter 3:

- Sketch a parametrized curve in \mathbb{R}^{2} or $\mathbb{R}^{3}(\S 3.1$: \#1-6)
- Determine the tangent vector (or tangent line), acceleration vector, and speed of a parametrized curve at a point (§3.1: \#7-10, 15-19)
- Set up an integral for the arclength of a parametrized curve, and evaluate it if possible (§3.2: \#1-10)
- Sketch a vector field in \mathbb{R}^{2} or $\mathbb{R}^{3}(\S 3.3: \# 1-12)$
- Given a vector field \mathbf{F}, verify that a given parametrized curve is a flow line of \mathbf{F} (§3.3: \#1719) or set up (and if possible solve) a system of differential equations to find flow lines of \mathbf{F} (§3.3: \#20-22)
- Calculate the divergence and curl of a vector field (§3.4: \#1-11)
- Prove identities involving divergence and curl (§3.4: Theorem 4.3 and Theorem 4.4 (p. 218), and \#14,15,21-24)

Chapter 6:

- Set up and evaluate a scalar or vector line integral of a function $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ along a parametrized curve in \mathbb{R}^{2} (§6.1: \#1-11, 13, 14, 17-21)
- Understand what happens to a line integral when the curve is reparametrized (in particular, know what is meant by an orientation of a curve) (§6.1: \#15)
- Use Green's Theorem to convert a line integral to a double integral, or vice versa (§6.2: \#58,11)
- Use Green's Theorem to find the area of a bounded region (§6.2: \#9,10,12-16)
- Use Green's Theorem to deduce facts about line integrals of conservative vector fields (§6.2: \#19-21, §6.3: \#1,2)
- Determine whether a vector field is conservative, and if so find a scalar potential function (§6.3: \#3-16)
- Use the scalar potential function of a conservative vector field to evaluate line integrals (§6.3: \#17-24)

Chapter 7:

- For a given parametrized surface $\mathbf{X}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3}$, find coordinate curves, tangent vectors, normal vectors and tangent planes, and express the underlying surface as the graph of a function $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ or as a level surface of a function $f: \mathbb{R}^{3} \rightarrow \mathbb{R}(\S 7.1: \# 1-4,6-11,14-17$; §7.6: \#1-8)
- Find the surface area of a parametrized surface (§7.1: \#18-21)
- Set up and evaluate a scalar or vector surface integral along a parametrized surface in \mathbb{R}^{3} (§7.2: \#1-3,5,6,9-23; §7.6: \#9-12)
- Know what happens to a surface integral when the surface is reparametrized (§7.2: \#4)
- Verify Stokes' Theorem for a given surface and vector field (§7.3: \#1-4)
- Verify the Divergence Theorem for a given closed surface and vector field (§7.3: \#6-9
- Use Stokes' Theorem or the Divergence Theorem to replace a difficult integral with easier ones (§7.3: \#5,11,12,14,16)
- Other applications of Stokes' Theorem and the Divergence Theorem (§7.6: \#21,22,26,28,38)
- Understand the geometric interpretations of Stokes' Theorem and the Divergence Theorem (§7.3: \#28)

