Reparametrization

The green exam featured line integrals over the curve C parametrized by $\left(t, t^{3} / 3, t^{2} / 2\right)$, for $0 \leq t \leq 1$. The solution to problem $\# 1 \mathrm{~g}$ was

$$
\begin{aligned}
\int_{C}(3 x y+2 z+1)^{1 / 2} d s & =\int_{0}^{1}\left(t^{4}+t^{2}+1\right)^{1 / 2}\left\|\frac{d \mathbf{x}}{d t}\right\| d t \\
& =\int_{0}^{1}\left(t^{4}+t^{2}+1\right)^{1 / 2}\left(t^{4}+t^{2}+1\right)^{1 / 2} d t \\
& =\int_{0}^{1}\left(t^{4}+t^{2}+1\right) d t \\
& =\left.\left(\frac{t^{5}}{5}+\frac{t^{3}}{3}+t\right)\right|_{0} ^{1}=\frac{1}{5}+\frac{1}{3}+1=\frac{23}{15}
\end{aligned}
$$

and the solution to problem \#1h was

$$
\begin{aligned}
\int_{C} z d x+y d y+x d z & =\int_{0}^{1} \mathbf{F}(\mathbf{x}(t)) \cdot \mathbf{x}^{\prime}(t) d t \\
& =\int_{0}^{1}\left(t^{2} / 2, t^{3} / 3, t\right) \cdot\left(1, t^{2}, t\right) d t \\
& =\int_{0}^{1} 3 t^{2} / 2+t^{5} / 3 d t \\
& =\left.\left(\frac{t^{3}}{2}+\frac{t^{6}}{18}\right)\right|_{0} ^{1}=\frac{1}{2}+\frac{1}{18}=\frac{5}{9}
\end{aligned}
$$

(On the blue version, x and z were interchanged; the integrals worked out the same way.)
Reversing the starting and ending points would require a reparametrization such as

$$
\mathbf{y}(t)=\left(1-t, \frac{(1-t)^{3}}{3}, \frac{(1-t)^{2}}{2}\right), \quad 0 \leq t \leq 1
$$

(Note that now $\mathbf{y}(0)=\mathbf{x}(1)=(1,1,1)$ and $\mathbf{y}(1)=\mathbf{x}(0)=(0,0,0)$.
If you work out the integrals, you will find that

$$
\int_{\mathbf{y}}(3 x y+2 z+1)^{1 / 2} d s=\int_{\mathbf{x}}(3 x y+2 z+1)^{1 / 2} d s
$$

and

$$
\int_{\mathbf{y}} z d x+y d y+x d z=-\int_{\mathbf{x}} z d x+y d y+x d z
$$

This is consistent with the principle that an orientation-reversing reorientation of a curve preserves the sign of scalar line integrals along it, but reverses the sign of vector line integrals (Theorem 1.5 , p. 371 of Colley).

