Math 223, Fall 2010
Extra Credit Problem \#1
Due date: Friday 8/27/10
Prove that

$$
\mathbf{v} \cdot \mathbf{w}=\|\mathbf{v}\|\|\mathbf{w}\| \cos \theta
$$

for all $\mathbf{v}, \mathbf{w} \in \mathbb{R}^{2}$. Here, as always "prove" means "come up with an argument that is always valid, no matter what vectors you plug in"; it is not enough (it is never enough!) to merely give an example.

To do this, fill in the details of the following argument.

1. Draw \mathbf{v} and \mathbf{w} on a coordinate axis. Let α and β be the angles formed by \mathbf{v} and \mathbf{w} in standard position.
2. Express α and β in terms of the components $v_{1}, v_{2}, w_{1}, w_{2}$ of \mathbf{v} and \mathbf{w}.
3. Next, express θ in terms of α and β.
4. Then, calculate $\cos \theta$ (you'll need some trigonometry here; in particular, you'll need to rewrite expressions like $\cos (\arctan z)$ without using trig functions).
5. Finally, show that the result is equal to $\frac{\mathbf{v} \cdot \mathbf{w}}{\|\mathbf{v}\|\|\mathbf{w}\|}$.
