Math 141, Fall 2009
Test \#2 Redo Answers

Problem R3b [10 pts]

Evaluate

$$
\lim _{x \rightarrow \infty}\left(9^{x}+7\right)^{\left(\frac{1}{2 x-5}\right)}
$$

Denote the limit by L. Then

$$
\begin{align*}
\ln L & =\lim _{x \rightarrow \infty} \ln \left[\left(9^{x}+7\right)^{\left(\frac{1}{2 x-5}\right)}\right] \\
& =\lim _{x \rightarrow \infty} \frac{1}{2 x-5} \ln \left(9^{x}+7\right) \\
& =\lim _{x \rightarrow \infty} \frac{\ln \left(9^{x}+7\right)}{2 x-5} \\
& =\lim _{x \rightarrow \infty} \frac{\frac{1}{9^{x}+7}(\ln 9)\left(9^{x}\right)}{2} \\
& =\frac{\ln 9}{2} \cdot \lim _{x \rightarrow \infty} \frac{9^{x}}{9^{x}+7} \tag{*}\\
& =\frac{\ln 9}{2} \cdot \lim _{x \rightarrow \infty} \frac{1}{1+7 \cdot 9^{-x}} \\
& =\frac{\ln 9}{2} \cdot 1=\ln \left(9^{1 / 2}\right)=\ln 3
\end{align*}
$$

Therefore,

$$
L=3
$$

Note: The limit in $\operatorname{step}(*)$ is an ∞ / ∞ form, so it is also possible to evaluate it using LHR:

$$
\lim _{x \rightarrow \infty} \frac{9^{x}}{9^{x}+7}=\lim _{x \rightarrow \infty} \frac{(\ln 9) 9^{x}}{(\ln 9) 9^{x}}=1
$$

Problem R4 [20 pts] Let A be the region lying above the x-axis and under the graph of $f(x)=16-x^{4}$. A rectangle is to be inscribed in A so that one side of the rectangle lies on the x-axis. Find the dimensions (base and height) that maximize the area of the rectangle.

Here is a picture of a rectangle inscribed under the graph:

The y-intercepts of the graph of $f(x)$ are ± 2.
The two upper corners of the rectangle will be $\left(x, 16-x^{4}\right)$, and $\left(-x, 16-x^{4}\right)$ for some $x \in[0,2]$. Therefore:
Base of rectangle $=2 x$
Height of rectangle $=16-x^{4}$
Area $\quad=A(x)=2 x\left(16-x^{4}\right)=32 x-2 x^{5}$.
Next, we find the maximum value of $A(x)$ on $[0,2]$ by calculating its critical values:

$$
\begin{aligned}
A^{\prime}(x)=32-10 x^{4} & =0 \\
10 x^{4} & =32 \\
x^{4} & =16 / 5 \\
x & =2 \cdot 5^{-1 / 4} .
\end{aligned}
$$

Furthermore, $A^{\prime \prime}(x)=-40 x^{3}$ is clearly negative for any positive value of x (such as the critical value just calculated). Therefore, by the Second Derivative Test, it is a local maximum. It's the only critical value on $[0,2]$, so it is the absolute maximum on that interval.

Therefore the dimensions of the maximum-area rectangle are:

$$
\text { base }=4 \cdot 5^{-1 / 4}, \quad \text { height }=\frac{64}{5}=12.8
$$

Problem R5 [20 pts] An ice cream cone is 15 cm high and has diameter 5 cm at its top. The cone is partially full of melted ice cream, which is dripping out of the bottom of the cone at a rate of $3 \mathrm{~cm}^{3} / \mathrm{sec}$. The top surface of the ice cream is a circle that shrinks as the ice cream melts. At what rate is the area of that surface decreasing when there are $60 \mathrm{~cm}^{3}$ of ice cream left in the cone?

Here is the picture (with green ice cream):

The melted ice cream is in the shape of a cone with radius r and height h. By similar triangles, we have $h / r=15 / 2.5=6$, so $h=6 r$. Therefore, we can write the volume V and surface area A as functions of r :

$$
\begin{aligned}
V & =\frac{\pi}{3} r^{2} h=2 \pi r^{3} \\
A & =\pi r^{2}
\end{aligned}
$$

Note that the problem asks us to find $A^{\prime}=d A / d t$. Differentiating with respect to time, we get

$$
\begin{aligned}
V^{\prime} & =6 \pi r^{2} r^{\prime} \\
A^{\prime} & =2 \pi r r^{\prime}
\end{aligned}
$$

In particular,

$$
\begin{equation*}
A^{\prime}=\frac{V^{\prime}}{3 r} \tag{*}
\end{equation*}
$$

It is given that $V^{\prime}=-3 \mathrm{~cm}^{3} / \mathrm{sec}$. Meanwhile, solving $V=2 \pi r^{3}$ for r gives $r=(V / 2 \pi)^{1 / 3}$, so when $V=60 \mathrm{~cm}^{3}$, we have

$$
r=(30 / \pi)^{1 / 3} \mathrm{~cm}
$$

and therefore

$$
A^{\prime}=\frac{3}{\left.3(30 / \pi)^{1 / 3}\right)}=\left(\frac{\pi}{30}\right)^{1 / 3} \mathrm{~cm}^{2} / \mathrm{sec} \approx 0.47135 \mathrm{~cm}^{2} / \mathrm{sec}
$$

