
Math 141 Honors Problems #8 Comments

HP14: The function b(x) = x2 + ln |x−2|
1000

is continuous at all real numbers except at x = 2. The graph has
a vertical asymptote, because

lim
x→2

b(x) = −∞.

So the graph should look something like this:

However, your calculator will probably not be able to detect the asymptote, and will produce something like
this:

Zooming in close may reveal the behavior, but it depends on your calculator. Here’s what Maple produces
for the interval [−1.99, 2.01]:



What’s going on here is that you have to get really close to x = 2 in order to observe that limx→2 b(x) =
−∞. In many problems, particularly in calculus textbooks, it’s enough to observe the value of b(x) at x-values
like 2 ± 0.1, 2 ± 0.01, 2 ± 0.001. Not here:

x b(x) x b(x)
2.1 4.407697415 1.9 3.607697415
2.01 4.035494830 1.99 3.955494830
2.001 = 2 + 10−3 3.997093245 1.999 3.989093245
2.00001 3.9885270746 1.99999 3.9884470746
2 + 10−10 3.9769741495 2 − 10−10 3.9769741487
2 + 10−20 3.9539482981 2 − 10−20 3.9539482981
2 + 10−40 3.9078965963 2 − 10−40 3.9078965963
2 + 10−40 3.9078965963 2 − 10−40 3.9078965963

It’s no wonder that a calculator can’t detect the asymptote, since numbers that are even this close to 2 have
y-values close to 4.

Indeed, if r is large, then

b(2 ± 10−r) = 4 ± 2 · 10−r + 10−2r +
ln(10−r

1000
≈ 4 −

(

ln 10

1000

)

r ≈ 4 − 0.002303r.

In order to make this negative, we need r to be about 1737. To put this in perspective, even though the
values of b(x) decrease without bound as x → 2, it is nevertheless the case that b(2.0000000000000000000
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HP15: First, assume that the point P we are looking for is on the y-axis; call its coordinates (0, y). Observe
that 0 ≤ y ≤ h. So we’re trying to minimize the function

L(y) = d(P,X) + d(P, Y ) + d(P,Z) =
√

c2 + y2 +
√

c2 + y2 + h − y = 2(c2 + y2)1/2 + h − y

on the interval [0, h]. First, we find the critical value(s) of L by setting L′(y) = 0:

L′(y) = 2y(c2 + y2)−1/2 − 1 = 0

2y(c2 + y2)−1/2 = 1

2y = (c2 + y2)1/2

4y2 = c2 + y2

y = c/
√

3.

Recall that the domain of L is [0, h]. Therefore, we have two cases:

Case I: c/
√

3 ≤ h. Then there are no critical values in the domain (except possibly at an endpoint if

c/
√

3 = h), so the minimum must be achieved at one of the endpoints, namely y = 0 or y = h. Note that

L(0) = 2c + h, L(h) = 2
√

c2 + h2.

Which of these is bigger? To figure this out, we’ll reduce it to an algebraically simpler question, then
ultimately use the very inequality that defines this case — namely, c/sqrt3 > h.

First, square both quantities:

L(0)2 = 4c2 + 4ch + h2, L(h)2 = 4c2 + 4h2.

Now, observe that

L(0)2 − L(h)2 = (4c2 + 4ch + h2) − (4c2 + 4h2) = 4ch − 3h2 = h(4c − 3h).

But since c/sqrt3 > h, certainly c > h, so 4c − 3h > 0. Therefore L(0)2 > L(h)2, which implies that
L(0) > L(h) (because both quantities are positive — they’re sums of lengths). We conclude that the globla
minimum of L(y) occurs at y = h.

Case II: c/sqrt3 < h. Then the critical value c/
√

3 lies in the domain. Moreover,

L′(0) = −1,

L′(h) =
2h√

c2 + h2
− 1

>
2h

√

(h
√

3)2 + h2)
− 1

=
2h√
4h2

− 1 = 0

so by the First Derivative Test, y = c/
√

3 is a local minimum, and in fact the global minimum.


