Math 141 Honors Problems #8 Comments

HP14: The function $b(x) = x^2 + \frac{\ln |x-2|}{1000}$ is continuous at all real numbers except at x = 2. The graph has a vertical asymptote, because

$$\lim_{x \to 2} b(x) = -\infty.$$

So the graph should look something like this:

However, your calculator will probably not be able to detect the asymptote, and will produce something like this:

Zooming in close may reveal the behavior, but it depends on your calculator. Here's what Maple produces for the interval [-1.99, 2.01]:

What's going on here is that you have to get **really** close to x = 2 in order to observe that $\lim_{x\to 2} b(x) = -\infty$. In many problems, particularly in calculus textbooks, it's enough to observe the value of b(x) at x-values like 2 ± 0.1 , 2 ± 0.01 , 2 ± 0.001 . Not here:

x	b(x)	x	b(x)
2.1	4.407697415	1.9	3.607697415
2.01	4.035494830	1.99	3.955494830
$2.001 = 2 + 10^{-3}$	3.997093245	1.999	3.989093245
2.00001	3.9885270746	1.99999	3.9884470746
$2 + 10^{-10}$	3.9769741495	$2 - 10^{-10}$	3.9769741487
$2 + 10^{-20}$	3.9539482981	$2 - 10^{-20}$	3.9539482981
$2 + 10^{-40}$	3.9078965963	$2 - 10^{-40}$	3.9078965963
$2 + 10^{-40}$	3.9078965963	$2 - 10^{-40}$	3.9078965963

It's no wonder that a calculator can't detect the asymptote, since numbers that are even this close to 2 have y-values close to 4.

Indeed, if r is large, then

$$b(2\pm 10^{-r}) = 4\pm 2\cdot 10^{-r} + 10^{-2r} + \frac{\ln(10^{-r})}{1000} \approx 4 - \left(\frac{\ln 10}{1000}\right)r \approx 4 - 0.002303r.$$

HP15: First, assume that the point P we are looking for is on the y-axis; call its coordinates (0, y). Observe that $0 \le y \le h$. So we're trying to minimize the function

$$L(y) = d(P,X) + d(P,Y) + d(P,Z) = \sqrt{c^2 + y^2} + \sqrt{c^2 + y^2} + h - y = 2(c^2 + y^2)^{1/2} + h - y$$

on the interval [0, h]. First, we find the critical value(s) of L by setting L'(y) = 0:

$$L'(y) = 2y(c^{2} + y^{2})^{-1/2} - 1 = 0$$

$$2y(c^{2} + y^{2})^{-1/2} = 1$$

$$2y = (c^{2} + y^{2})^{1/2}$$

$$4y^{2} = c^{2} + y^{2}$$

$$y = c/\sqrt{3}.$$

Recall that the domain of L is [0, h]. Therefore, we have two cases:

Case I: $c/\sqrt{3} \le h$. Then there are no critical values in the domain (except possibly at an endpoint if $c/\sqrt{3} = h$), so the minimum must be achieved at one of the endpoints, namely y = 0 or y = h. Note that

$$L(0) = 2c + h,$$
 $L(h) = 2\sqrt{c^2 + h^2}.$

Which of these is bigger? To figure this out, we'll reduce it to an algebraically simpler question, then ultimately use the very inequality that defines this case — namely, c/sqrt3 > h.

First, square both quantities:

$$L(0)^2 = 4c^2 + 4ch + h^2, \qquad L(h)^2 = 4c^2 + 4h^2.$$

Now, observe that

$$L(0)^{2} - L(h)^{2} = (4c^{2} + 4ch + h^{2}) - (4c^{2} + 4h^{2}) = 4ch - 3h^{2} = h(4c - 3h)$$

But since c/sqrt3 > h, certainly c > h, so 4c - 3h > 0. Therefore $L(0)^2 > L(h)^2$, which implies that L(0) > L(h) (because both quantities are positive — they're sums of lengths). We conclude that the globla minimum of L(y) occurs at y = h.

Case II: c/sqrt3 < h. Then the critical value $c/\sqrt{3}$ lies in the domain. Moreover,

$$L'(0) = -1,$$

$$L'(h) = \frac{2h}{\sqrt{c^2 + h^2}} - 1$$

$$> \frac{2h}{\sqrt{(h\sqrt{3})^2 + h^2)}} - 1$$

$$= \frac{2h}{\sqrt{4h^2}} - 1 = 0$$

so by the First Derivative Test, $y = c/\sqrt{3}$ is a local minimum, and in fact the global minimum.