Problem HP9: There were two solutions I had in mind (of course, there are lots of others).
First, you could look for a function $p(x)$ whose second derivative has a jump discontinuity at $x=0$. This would correspond to a cusp in the graph of $p^{\prime}(x)$. The simplest function we know that has a cusp is probably the absolute value function. That function is piecewise linear, so $p(x)$ should be piecewise quadratic, and indeed

$$
p(x)=\left\{\begin{array}{l}
x^{2} \text { if } x \geq 0 \\
-x^{2} \text { if } x \leq 0
\end{array}\right.
$$

has the desired property of being differentiable, but not second-differentiable.
More generally, let

$$
q(x)=\left\{\begin{array}{l}
x^{n} \text { if } x \geq 0 \\
-x^{n} \text { if } x \leq 0
\end{array} .\right.
$$

Then $q(x)$ is certainly differentiable to all orders for $x \neq 0$. On the other hand, at $x=0$, observe that

$$
\lim _{x \rightarrow 0^{+}} \frac{d^{n} q}{d x^{n}}=n!\quad \text { and } \quad \lim _{x \rightarrow 0^{-}} \frac{d^{n} q}{d x^{n}}=-n!
$$

so $q(x)$ does not have a continuous $n^{t h}$ derivative.
Second, you could look for a function $p(x)$ whose second derivative has an infinite discontinuity at $x=0$. Since we want $p^{\prime}(x)$ to be continuous on \mathbb{R}, it had better have a vertical tangent line. This suggests that it should be something like $x^{1 / 3}$, and indeed

$$
p(x)=x^{4 / 3}
$$

is differentiable (because $p^{\prime}(x)=\frac{4}{3} x^{1 / 3}$ is defined and continuous everywhere) but not second-differentiable (because $p^{\prime \prime}(x)=\frac{4}{9} x^{-2 / 3}$ is not defined at $x=0$). More generally, let

$$
q(x)=x^{n+1 / 3} .
$$

Then $d q / d x, d^{2} q / d x^{2}, \ldots, d^{n-1} q / d x^{n-1}$ are power functions with positive powers, but $d^{n} q / d x^{n}=C x^{-1 / 3}$ has an infinite discontinuity at $x=0$. (Here C is some constant whose value we don't care about.)

Problem HP10a:

$$
\begin{array}{rlr}
\lim _{x \rightarrow 0} \frac{\sin x}{x+x^{2}} & =\lim _{x \rightarrow 0}\left(\frac{\sin x}{x} \frac{1}{1+x}\right) & \text { (algebra) } \\
& =\left(\lim _{x \rightarrow 0} \frac{\sin x}{x}\right)\left(\lim _{x \rightarrow 0} \frac{1}{1+x}\right) & \text { (Limit Laws) } \\
& =1 \cdot 1=1 &
\end{array}
$$

Problem HP10b:

$$
\begin{aligned}
\lim _{x \rightarrow 0} \frac{\sin ^{2}(3 x)}{x^{2} \cos x} & =\lim _{x \rightarrow 0}\left[\left(\frac{\sin (3 x)}{x}\right)^{2}(\cos x)\right] \\
& =\left(\lim _{x \rightarrow 0} \frac{\sin (3 x)}{x}\right)^{2}\left(\lim _{x \rightarrow 0} \cos x\right) \\
& =\left(\lim _{x \rightarrow 0} \frac{\sin (3 x)}{x}\right)^{2} \\
& =\left(\lim _{y \rightarrow 0} \frac{\sin y}{y / 3}\right)^{2} \\
& =\left(3 \lim _{y \rightarrow 0} \frac{\sin y}{y}\right)^{2} \\
& =3^{2}=9
\end{aligned}
$$

Problem HP10c:

$$
\begin{aligned}
\lim _{x \rightarrow 0} \frac{x-\tan x}{\sin x} & =\lim _{x \rightarrow 0}\left(\frac{x}{\sin x}-\frac{\frac{\sin x}{\cos x}}{\sin x}\right) \\
& =\lim _{x \rightarrow 0}\left(\frac{1}{\frac{\sin x}{x}}-\frac{1}{\cos x}\right) \\
& =\left(\frac{1}{\lim _{x \rightarrow 0} \frac{\sin x}{x}}\right)-\left(\frac{1}{\lim _{x \rightarrow 0} \cos x}\right) \\
& =1-1=0
\end{aligned}
$$

Problem HP10d:

$$
\begin{align*}
\lim _{\theta \rightarrow 0} \frac{\cos \theta-1}{\sin ^{2} \theta} & =\lim _{\theta \rightarrow 0} \frac{\cos \theta-1}{1-\cos ^{2} \theta} \tag{algebra}\\
& =\lim _{\theta \rightarrow 0} \frac{-(1-\cos \theta)}{(1-\cos \theta)(1+\cos \theta)} \tag{algebra}\\
& =\lim _{\theta \rightarrow 0} \frac{-1}{1+\cos \theta} \\
& =\frac{-1}{1+1}=\frac{-1}{2}
\end{align*}
$$

(algebra)

