Problem HP7: First, $p(x) / q(x)$ will have a diagonal asymptote if and only if the degree of $p(x)$ is exactly one more than the degree of $q(x)$. That is, for some n, the rational function $f(x)$ has the form

$$
f(x)=\frac{p(x)}{q(x)}=\frac{\alpha x^{n+1}+\beta x^{n}+\cdots}{\gamma x^{n}+\delta x^{n-1}+\cdots} .
$$

In this case, $f(x)$ will get closer and closer to a line with slope α / γ as $x \rightarrow \pm \infty$.
On the other hand, this doesn't mean that the line $y=(\alpha / \gamma) x$ is the asymptote. Why should the asymptote have to have y-intercept zero? After all, shifting the graph of $f(x)$ up or down should shift the asymptote by the same amount.

To find the equation of the asymptote, we go back to the definition: An asymptote is a line to which the graph of $f(x)$ gets closer and closer as $x \rightarrow \pm \infty$. Algebraically, this should mean that

$$
\lim _{x \rightarrow \pm \infty}\left[\frac{p}{q}-(m x+b)\right]=0
$$

where $y=m x+b$ is the equation of the asymptote, and I've abbreviated $p=p(x), q=q(x)$. It turns out that m and b are determined by the two leading coefficients of each of p and q, for the following reason. The last equation says that

$$
\lim _{x \rightarrow \pm \infty}\left[\frac{p-(m x+b) q}{q}\right]=0
$$

and we know that this will happen if and only if the degree of $p-(m x+b) q$ is strictly less than the degree of q. In other words, the x^{n+1} and x^{n} coefficients of $p-(m x+b) q$ must vanish. If, as before, we write

$$
p=\alpha x^{n+1}+\beta x^{n}+\cdots, \quad q=\gamma x^{n}+\delta x^{n-1}+\cdots
$$

then

$$
\begin{aligned}
p-(m x+b) q & =\left(\alpha x^{n+1}+\beta x^{n}+\cdots\right)-(m x+b)\left(\gamma x^{n}+\delta x^{n-1}+\cdots\right) \\
& =(\alpha-m \gamma) x^{n+1}+(\beta-b \gamma-m \delta) x^{n}+[\text { lower-order terms }]
\end{aligned}
$$

Setting these coefficients to zero and solving for m and b in terms of $\alpha, \beta, \gamma, \delta$, we get

$$
m=\alpha / \gamma, \quad b=\frac{\beta \gamma-\alpha \delta}{\gamma^{2}}
$$

and this tells us the equation of the diagonal asymptote.
In fact, this is the same as the quotient upon dividing p by q using polynomial long division. (The remainder doesn't affect the equation of the asymptote.)

I awarded 1 point for noticing the condition $\operatorname{deg}(p)=\operatorname{deg}(q)+1$ (it wasn't enough just to say that $\operatorname{deg}(p)>$ $\operatorname{deg}(q)$, because in fact if $\operatorname{deg}(p)>\operatorname{deg}(q)+1$ then $f(x)$ does not have a diagonal asymptote); 1 point for figuring out the slope; and 1 point for figuring out how to obtain the equation.

