Math 141 Honors Problems \#3
Due date: Tuesday, 9/8/09
HP5 [4 points] Define a function S with domain \mathbb{R} as follows: $S(x)$ is the number obtained by writing x as a decimal and swapping the first two digits after the decimal point. For example:

$$
\begin{aligned}
S(0) & =0 \\
S(0.12) & =0.21 \\
S(-0.12) & =-0.21 \\
S(0.12345) & =0.21345 \\
S(0.11111) & =0.11111 \\
S(\pi) & =3.4115926535 \cdots
\end{aligned}
$$

For which real numbers a does $\lim _{x \rightarrow a^{+}} S(x)$ exist? (Suggestion: Start by choosing a few random values for a and working out the limit for the values you've chosen. Then try to determine a general pattern.)

If $\lim _{x \rightarrow a^{+}} S(x)$ exists, must it equal $S(a)$?
Answer the same questions for $\lim _{x \rightarrow a^{-}} S(x)$ and $\lim _{x \rightarrow a} S(x)$.
For which real numbers a is S continuous at a ?

HP6 [3 points] Suppose that $p(x)$ and $q(x)$ are any two polynomials: that is,

$$
\begin{aligned}
& p(x)=a_{n} x^{n}+a_{n-1} x^{n-1}+\cdots+a_{2} x^{2}+a_{1} x+a_{0} \\
& q(x)=b_{m} x^{m}+b_{m-1} x^{m-1}+\cdots+b_{2} x^{2}+b_{1} x+b_{0}
\end{aligned}
$$

where n and m are nonnegative integers and $a_{n}, \ldots, a_{0}, b_{m}, \ldots, b_{0}$ are real numbers. This problem is about the limit

$$
\lim _{x \rightarrow 0} \frac{p(x)}{q(x)}
$$

a. Under what conditions on $n, m, a_{n}, \ldots, a_{0}, b_{m}, \ldots, b_{0}$ does the limit equal 0 ?
b. Under what conditions does the limit equal a nonzero real number? What nonzero real number is it?
c. Under what conditions does the limit not exist?

Your answers should be in terms of the coefficients $a_{n}, \ldots, a_{0}, b_{m}, \ldots, b_{0}$, and should include a complete explanation. (For instance, it is not sufficient to only give an example of each of the three cases.)
(Note: Don't assume that the rational function $p(x) / q(x)$ is in lowest terms. The answer I'm looking for applies to every possible pair of polynomials, even ones that that have common factors.)

