Math 141 Honors Problems \#15
Due date: Monday 12/14/09, 4:30 PM, Snow 120

HP29 [4 points]

Evaluate the improper integrals

$$
\int_{1}^{\infty} \frac{\ln x}{x^{2}} d x, \quad \int_{1}^{\infty} \frac{(\ln x)^{2}}{x^{2}} d x, \quad \int_{1}^{\infty} \frac{(\ln x)^{3}}{x^{2}} d x, \quad \int_{1}^{\infty} \frac{(\ln x)^{4}}{x^{2}} d x, \quad \ldots
$$

What pattern do you observe?
How might you prove that the pattern continues to hold for all powers of $\ln x$ in the numerator?
What about these integrals?

$$
\int_{1}^{\infty} \frac{\ln x}{x^{3}} d x, \quad \int_{1}^{\infty} \frac{(\ln x)^{2}}{x^{3}} d x, \quad \int_{1}^{\infty} \frac{(\ln x)^{3}}{x^{3}} d x, \quad \int_{1}^{\infty} \frac{(\ln x)^{4}}{x^{3}} d x, \quad \ldots
$$

Or even

$$
\int_{1}^{\infty} \frac{\ln x}{x^{p}} d x, \quad \int_{1}^{\infty} \frac{(\ln x)^{2}}{x^{p}} d x, \quad \int_{1}^{\infty} \frac{(\ln x)^{3}}{x^{p}} d x, \quad \int_{1}^{\infty} \frac{(\ln x)^{4}}{x^{p}} d x, \quad \ldots
$$

where p is an arbitrary positive integer?

HP30 [4 points]

A Lamé curve is a curve defined by the equation

$$
|x|^{p}+|y|^{p}=1
$$

for some positive number p. For example, if $p=2$ then the Lamé curve is the unit circle, and for $p=1$ it is a diamond (i.e., a square with vertices at $(0, \pm 1)$ and $(\pm 1,0)$. The larger p is, the "fatter" the curve gets. Lamé curves with $0<p<1$ might reasonably be called "astroids" (from the Greek for "star-shaped", although that term is traditionally reserved for the particular case $p=2 / 3$. (For an attractive picture of Lamé curves, see http://mathworld.wolfram.com/Superellipse.html.)

Use calculus to show some or all of the following facts (arranged in order from easiest to hardest):

- For $p=2 / 3$, the area inside the Lamé curve is $3 \pi / 8$.
- For $p=1 / 2$, the area inside the Lamé curve is $2 / 3$.
- For $p=2 / 3$, the perimeter of the Lamé curve is $3 \pi / 8$.
- For $p=1 / 2$, the perimeter of the Lamé curve is $4+2 \sqrt{2} \ln (1+\sqrt{2})$.

HP31 [3 points]

Design a Math 121/141 final exam problem on the topic of arc length. Keep in mind that calculators are not allowed on the final exam, so you need to design a problem that is not too easy (i.e., "use the arc length formula to find the length of a line segment") but can be evaluated in closed form with nothing but pencil and paper. (No fair borrowing an example from the textbook!)

