Math 141 Honors Problems \#13
Due date: Tuesday, 11/24/09
HP21 [3 points] Find a formula for

$$
\int e^{a x} \sin b x d x
$$

in terms of a and b (where a and b are real numbers).

HP22 [3 points] Let $p(x)$ be a polynomial of degree n, say

$$
p(x)=\sum_{k=0}^{n} a_{n} x^{n}
$$

where $a_{0}, a_{1}, \ldots, a_{k}, \ldots, a_{n}$ are real numbers. Find a formula for

$$
\int e^{x} p(x) d x
$$

in terms of the a_{k} 's.

HP23 [4 points] As discussed in class, there's no closed formula for

$$
\int \frac{e^{x}}{x} d x
$$

For similar reasons, there is no closed formula for

$$
\int \frac{e^{x}}{x^{2}} d x
$$

On the other hand, there are similar-looking functions which can be antidifferentiated. For instance, the Quotient Rule tells us that $\frac{d}{d x}\left(e^{x} / x\right)=\left(x e^{x}-e^{x}\right) / x^{2}=e^{x} / x-e^{x} / x^{2}$, which implies that

$$
\int\left(\frac{e^{x}}{x}-\frac{e^{x}}{x^{2}}\right) d x=\frac{e^{x}}{x}+C
$$

(23a) For which constants a, b, c can the integral

$$
\int\left(\frac{a e^{x}}{x}+\frac{b e^{x}}{x^{2}}+\frac{c e^{x}}{x^{3}}\right) d x
$$

be evaluated?
(23b) Can you say anything more generally about integrals of the form

$$
\int\left(\sum_{k=1}^{n} \frac{a_{k} e^{x}}{x^{k}}\right) d x ?
$$

