Math 141 Honors Problems \#13
Due date: Tuesday, 11/24/09
HP21 [3 points] Find a formula for

$$
\int e^{a x} \sin b x d x
$$

in terms of a and b (where a and b are real numbers).
Let $I=\int e^{a x} \sin (b x) d x$.
Step 1: Apply integration by parts to I, with

$$
\begin{aligned}
u & =e^{a x}, & d u & =a e^{a x} d x \\
d v & =\sin (b x) d x, & v & =-(\cos (b x)) / b
\end{aligned}
$$

to get

$$
I=-\frac{e^{a x} \cos (b x)}{b}+\frac{a}{b} \underbrace{\int e^{a x} \cos (b x) d x}_{J}
$$

Step 2: Apply integration by parts to J, with

$$
\begin{aligned}
u & =e^{a x}, & d u & =a e^{a x} d x \\
d v & =\cos (b x) d x, & v & =(\sin (b x)) / b
\end{aligned}
$$

to get

$$
\begin{aligned}
I & =-\frac{e^{a x} \cos (b x)}{b}+\frac{a}{b}\left[\frac{e^{a x} \sin (b x)}{b}-\frac{a}{b} \int e^{a x} \sin (b x) d x\right] \\
& =-\frac{e^{a x} \cos (b x)}{b}+\frac{a e^{a x} \sin (b x)}{b^{2}}-\frac{a^{2}}{b^{2}} \int e^{a x} \sin (b x) d x \\
& =\underbrace{\left(-\frac{b e^{a x} \cos (b x)+a e^{a x} \sin (b x)}{b^{2}}\right)}_{K}-\frac{a^{2}}{b^{2}} I
\end{aligned}
$$

Now, solving the equation $I=K-\left(a^{2} / b^{2}\right) I$ gives

$$
I=\frac{b^{2} K}{a^{2}+b^{2}}=-\frac{b e^{a x} \cos (b x)+a e^{a x} \sin (b x)}{a^{2}+b^{2}}
$$

HP22 [3 points] Let $p(x)$ be a polynomial of degree n, say

$$
p(x)=\sum_{k=0}^{n} a_{k} x^{k}
$$

where $a_{0}, a_{1}, \ldots, a_{k}, \ldots, a_{n}$ are real numbers. (There was a typo in the assignment, where the summand was given as $a_{n} x^{n}$ instead of the correct $a_{k} x^{k}$.) Find a formula for

$$
\int e^{x} p(x) d x
$$

in terms of the a_{k} 's.
Step 1: Find a formula just in terms of $p, p^{\prime}, p^{\prime \prime}$, etc., without worrying about the coefficients a_{k}. Integrating by parts repeatedly (always with u equal to the polynomial part of the integral and $d v=e^{x} d x$), we get

$$
\begin{aligned}
\int e^{x} p(x) d x & =e^{x} p(x)-\int e^{x} p^{\prime}(x) d x \\
& =e^{x} p(x)-e^{x} p^{\prime}(x)+\int e^{x} p^{\prime \prime}(x) d x \\
& =e^{x} p(x)-e^{x} p^{\prime}(x)+e^{x} p^{\prime \prime}(x)-\int e^{x} p^{\prime \prime \prime}(x) d x \\
& =\cdots
\end{aligned}
$$

This process stops after $n+1$ iterations, because $p^{(n+1)}(x)=0$. We conclude that

$$
\begin{equation*}
\int e^{x} p(x) d x=e^{x}\left[p(x)-p^{\prime}(x)+p^{\prime \prime}(x)-\cdots+(-1)^{n} p^{(n)}(x)\right]=e^{x} \sum_{i=0}^{n}(-1)^{i} p^{(i)}(x) \tag{*}
\end{equation*}
$$

Step 2: Plug in the a_{k} 's. Observe that

$$
\begin{aligned}
p(x) & =\sum_{k=0}^{n} a_{k} x^{k}, \\
p^{\prime}(x) & =\sum_{k=0}^{n} k a_{k} x^{k-1}=\sum_{j=0}^{n-1}(j+1) a_{j+1} x^{j}, \\
p^{\prime \prime}(x) & =\sum_{k=0}^{n} k(k-1) a_{k} x^{k-2}=\sum_{j=0}^{n-2}(j+2)(j+1) a_{j+2} x^{j}, \\
& \cdots \\
p^{(i)}(x) & =\sum_{k=0}^{n} k(k-1) \cdots(k-i+1) a_{k} x^{k-i} \\
& =\sum_{j=0}^{n-i}((j+i)(j+i-1) \cdots(j+2)(j+1)) a_{j+i} x^{j} .
\end{aligned}
$$

Plugging this into equation $(*)$ above, we get

$$
\int e^{x} p(x) d x=e^{x} \sum_{i=0}^{n}(-1)^{i}\left[\sum_{j=0}^{n-i}((j+i)(j+i-1) \cdots(j+2)(j+1)) a_{j+i} x^{j}\right] .
$$

A note: The expression in big parentheses can be expressed more conveniently using factorials:

$$
(j+i)(j+i-1) \cdots(j+2)(j+1)=\frac{(j+i)!}{j!}
$$

HP23 [4 points] As discussed in class, there are no closed formulas for $\int\left(e^{x} / x\right) d x$ or for $\int\left(e^{x} / x^{2}\right) d x$. On the other hand, there are similar-looking functions which can be antidifferentiated.
(23a) For which constants a, b, c can the integral

$$
\int\left(\frac{a e^{x}}{x}+\frac{b e^{x}}{x^{2}}+\frac{c e^{x}}{x^{3}}\right) d x
$$

be evaluated?
Observe that

$$
\begin{aligned}
\frac{d}{d x}\left(\frac{e^{x}}{x}\right) & =\frac{x e^{x}-e^{x}}{x^{2}}=\frac{e^{x}}{x}-\frac{e^{x}}{x^{2}} \\
\frac{d}{d x}\left(\frac{e^{x}}{x^{2}}\right) & =\frac{x^{2} e^{x}-2 x e^{x}}{x^{4}}=\frac{e^{x}}{x^{2}}-\frac{2 e^{x}}{x^{3}} .
\end{aligned}
$$

The first equation implies that $a=1, b=-1, c=0$ is a solution (i.e., the corresponding integral can be evaluated), and the second equation implies that $a=0, b=1, c=-2$ is a solution.

On the other hand, more generally, if two triples (a, b, c) and (A, B, C) are both solutions, then so are things like $(a+A, b+B, c+C)$, and $(2 a, 2 b, 2 c)$, and $(4 a-7 A, 4 b-7 B, 4 c-7 C)$, etc. (Here's a sneak preview of linear algebra: the set of all solutions is what is called a vector space.)

The most general rule is that (a, b, c) is a solution if and only if

$$
a+b+c / 2=0
$$

(You can verify that both $(1,-1,0)$ and $(0,1,-2)$ satisfy this condition.)
(23b) Can you say anything more generally about integrals of the form

$$
\int\left(\sum_{k=1}^{n} \frac{a_{k} e^{x}}{x^{k}}\right) d x ?
$$

The pattern in (23a) is the tip of the following iceberg: this integral can be evaluated if and only if

$$
\sum_{k=1}^{n} \frac{a_{k}}{k!}=0
$$

For example, the integral

$$
\int e^{x}\left(\frac{3}{x}-\frac{2}{x^{2}}+\frac{1}{2 x^{3}}+\frac{7}{x^{4}}\right) d x
$$

cannot be evaluated because

$$
\frac{3}{0!}-\frac{2}{1!}+\frac{1 / 2}{2!}+\frac{7}{3!}=3-2+\frac{1}{4}+\frac{7}{6}=\frac{29}{12} \neq 0
$$

On the other hand, $29 / 12=58 / 24=58 / 4$!, so the integral

$$
\int e^{x}\left(\frac{3}{x}-2 \frac{x^{2}}{+} \frac{1}{2 x^{3}}+\frac{7}{x^{4}}-\frac{58}{x^{4}}\right) d x
$$

can be evaluated!

