Math 141 Honors Problems \#10
Due date: Tuesday, 11/3/09
HP19 [3 points] First, read the (probably apocryphal) story about the ten-year-old Carl Friedrich Gauss and the sum $1+2+3+\cdots+99+100$ (type "Gauss 100 " into Google, or see Appendix F).

A version of Gauss's proof using modern summation notation: If $S=\sum_{i=1}^{n} i$ then

$$
\begin{aligned}
& \quad 2 S=\left(\sum_{i=1}^{n} i\right)+\left(\sum_{i=1}^{n}(n-i+1)\right) \\
& =\sum_{i=1}^{n}(i+n-i+1) \\
& =\sum_{i=1}^{n}(n+1) \\
& =n(n+1)
\end{aligned}
$$

so $S=n(n+1) / 2$. (This is the same idea as the "staircase" picture proof from class on Monday $11 / 2$.)
Using the same idea, prove the identity

$$
\sum_{i=1}^{n} i^{3}=\frac{n^{2}(n+1)^{2}}{4}
$$

You may use the identity

$$
\sum_{i=1}^{n} i^{2}=\frac{n(n+1)(2 n+1)}{6}
$$

in the course of the proof.

HP20 [4 points] Suppose that p is a positive real number. Without using the Fundamental Theorem of Calculus, evaluate

$$
\int_{0}^{1} p^{x} d x
$$

(Hint: Geometric series.)

