
Problem HP1: Here’s the formula you were aiming for:
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In English, “the sum of the squares of the numbers in the nth row of Pascal’s Triangle equals the middle
number in the (2n)th row” — but the formula is a nice concise way to say that.

Here’s the explanation I gave in class on Wednesday.

First, we know that
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means the number of subsets of a set of 2n elements. In other words, this is the
number of different ways to select an n-person subcommittees from a group of 2n people.

Here’s another way to calculate that number of choices. First, let’s arbitrarily take our set of 2n people,
paint n of them crimson, and paint the other n people blue. Now, let’s classify each possible n-person
subcommittee by the number of blue people on it. That number can be anything from 0 to n; let’s call it k.
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Adding up the right-hand column is another way to count the total number of n-person committees. That
gives
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where the second equality uses the fact that
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for all n and k (this is the left-right symmetry of

Pascal’s Triangle).

To recap, we’ve counted the number of n-element subcommittees of a (2n)-element set in two ways. Both
ways must yield the same answer: that is,
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Problem HP2: As most of you noticed, as n gets larger and larger, the quantity a(n) = s(n)−n! increases
without bound, but on the other hand, the quantity b(n) = s(n)/n! gets closer to 1. In other words,
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Many solvers drew the conclusion that it was therefore better to use b(n) to measure the accuracy of the
approximation, rather than a(n). However, this conclusion doesn’t necessarily follow; maybe the truth is
that Stirling’s formula is actually a lousy way of approximating n!, as suggested by equation (A). To put it
another way, there’s a distinction between the accuracy of s(n) itself and the accuracy of our various means
of testing its accuracy!

In fact, provided that s(n) and n! both increase without bound (as they certainly do), condition (A) is
logically stronger than condition (B). (We’ll be able to prove this shortly.) I would argue that b(n) is a
better measure of accuracy than a(n), since it is essentially measuring the percentage by which s(n) differs
from n!; since the numbers are so large, we’d expect the difference to be very large even if s(n) is only off by
a tiny percentage. In other word, equation (B) says that s(n) is an excellent approximation to n! for large
values of n, while equation (A) just says that it’s maybe not super-double-plus-excellent.


