Problem HP1: Here's the formula you were aiming for:

$$
\sum_{k=0}^{n}\binom{n}{k}^{2}=\binom{2 n}{n}
$$

In English, "the sum of the squares of the numbers in the $n^{\text {th }}$ row of Pascal's Triangle equals the middle number in the $(2 n)^{t h}$ row" - but the formula is a nice concise way to say that.

Here's the explanation I gave in class on Wednesday.
First, we know that $\binom{2 n}{n}$ means the number of subsets of a set of $2 n$ elements. In other words, this is the number of different ways to select an n-person subcommittees from a group of $2 n$ people.

Here's another way to calculate that number of choices. First, let's arbitrarily take our set of $2 n$ people, paint n of them crimson, and paint the other n people blue. Now, let's classify each possible n-person subcommittee by the number of blue people on it. That number can be anything from 0 to n; let's call it k.

Number of blue people	Number of crimson people	Number of possible subcommittees
0	n	$\binom{n}{0}\left(\begin{array}{l}n \\ n \\ n \\ 1\end{array}\right)\binom{n}{n-1}$
1	$n-1$	$\binom{n}{2}\left(\begin{array}{c}n-2\end{array}\right)$
2	$n-2$	$\binom{n}{k}\binom{n}{n-k}$
\vdots		
k	$\mathrm{n}-\mathrm{k}$	$\binom{n}{n-1}\binom{n}{1}$
\vdots		$\binom{n}{n}\binom{n}{0}$

Adding up the right-hand column is another way to count the total number of n-person committees. That gives

$$
\binom{n}{0}\binom{n}{n}+\binom{n}{1}\binom{n}{n-1}+\cdots+\binom{n}{n-1}\binom{n}{1}+\binom{n}{0}\binom{n}{n}=\sum_{k=0}^{n}\binom{n}{k}\binom{n}{n-k}=\sum_{k=0}^{n}\binom{n}{k}^{2}
$$

where the second equality uses the fact that $\binom{n}{k}=\binom{n}{n-k}$ for all n and k (this is the left-right symmetry of Pascal's Triangle).

To recap, we've counted the number of n-element subcommittees of a ($2 n$)-element set in two ways. Both ways must yield the same answer: that is,

$$
\sum_{k=0}^{n}\binom{n}{k}^{2}=\binom{2 n}{n}
$$

Problem HP2: As most of you noticed, as n gets larger and larger, the quantity $a(n)=s(n)-n$! increases without bound, but on the other hand, the quantity $b(n)=s(n) / n$! gets closer to 1 . In other words,

$$
\begin{equation*}
\lim _{n \rightarrow \infty} a(n)=\lim _{n \rightarrow \infty} s(n)-n!=+\infty \tag{A}
\end{equation*}
$$

and

$$
\begin{equation*}
\lim _{n \rightarrow \infty} a(n)=\lim _{n \rightarrow \infty} \frac{s(n)}{n!}=1 \tag{B}
\end{equation*}
$$

Many solvers drew the conclusion that it was therefore better to use $b(n)$ to measure the accuracy of the approximation, rather than $a(n)$. However, this conclusion doesn't necessarily follow; maybe the truth is that Stirling's formula is actually a lousy way of approximating n !, as suggested by equation (A). To put it another way, there's a distinction between the accuracy of $s(n)$ itself and the accuracy of our various means of testing its accuracy!

In fact, provided that $s(n)$ and n ! both increase without bound (as they certainly do), condition (A) is logically stronger than condition (B). (We'll be able to prove this shortly.) I would argue that $b(n)$ is a better measure of accuracy than $a(n)$, since it is essentially measuring the percentage by which $s(n)$ differs from $n!$; since the numbers are so large, we'd expect the difference to be very large even if $s(n)$ is only off by a tiny percentage. In other word, equation (B) says that $s(n)$ is an excellent approximation to n ! for large values of n, while equation (A) just says that it's maybe not super-double-plus-excellent.

